

Electronics Online Challenge

RCA Clock Radio Model: RC105-A

Texas Instruments Electronics Online Challenge

8931A - The 5 Guys Aiden Pyle 1/1/17

Introduction:

This report reflects my findings while deconstructing and researching internal components and IC chips from an RCA Clock Radio - Model: RC105-A. The reason that I choose this device was based on several factors. First, it was readily available, second, I was very interested in learning how a radio works, and third, in my digital electronics class, we have been learning and building circuit boards that make sound and react to sound, so I thought it would be a good idea to take apart a radio and learn more about the components and the IC chips that make the radio work.

Internal Components List:

Resistors - R (x50)

Diodes - D (x16)

• Capacitors - C (x47)

• Transistors - Q (x4)

• IC Chips - U (x3)

Potentiometer - P (x2)

Oscillator - X

Buttons (x8)

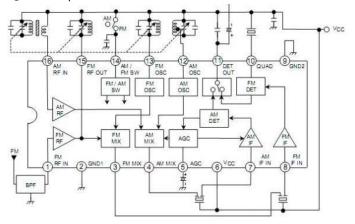
Switches (x2)

• 16Ω 0.5W Speaker

LCD

Transformer

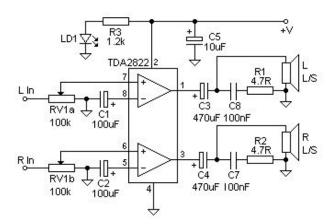
Internal Antenna


Intermediate Frequency Transformer - IFT

Internal Components Descriptions:

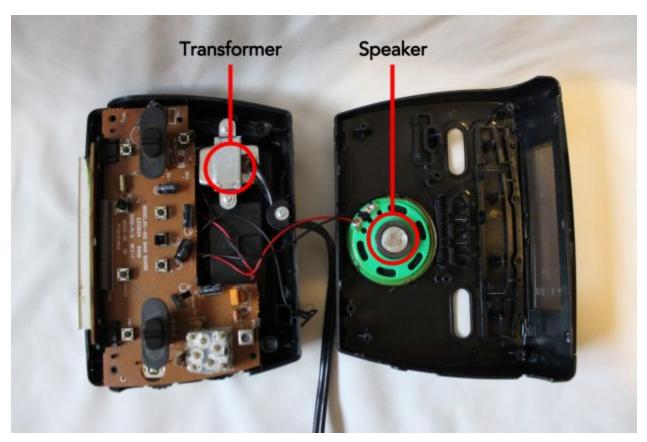
- Buttons: A device which closes or opens a circuit. This includes an On/Off, Wake Mode 1, Wake Mode 2, Sleep, Snooze, and Left/Right buttons.
- Switches: A device that redirects the flow of electricity somewhere else. This includes a switch that changes between AM/FM and an alarm/clock mode switch.
- 16**Q** 0.5W Speaker: Converts electrical impulses into audible sound.
- R: Used to reduce the voltage throughout the system.
- D: Allows a current to pass in only one direction.
- C: Stores an electric charge.
- Q: Amplifies or switches electronic signals and power.
- U: An Integrated Circuit (more info below).
- P: A variable resistor which controls the volume and the radio channel.
- X: Generates oscillating electric current with a precise frequency.
- LCD: (Liquid Crystal Display) Displays the current time on the radio and radio station.
- Transformer: Converts AC power to DC power. M/N: SF 28U/111122
- Internal Antenna: Receives radio signals.
- IFT: Converts the frequency of an incoming signal to an intermediate frequency.

IC Chips Summary:

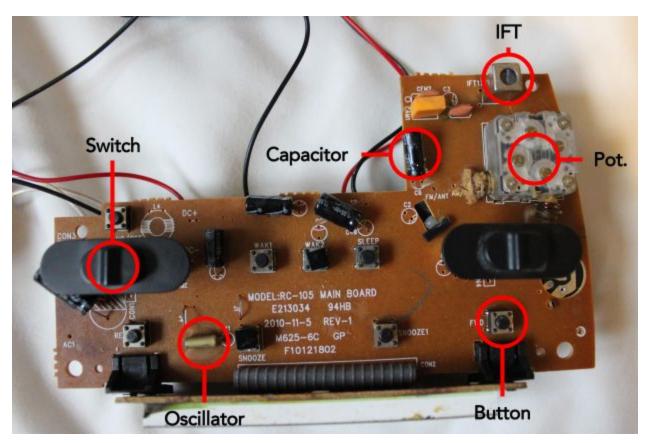

- U1: <u>TA2003</u> (Unisonic Technologies)
 - This 16-pin chip integrates the complete tuner function of the radio from antenna input to digital output.

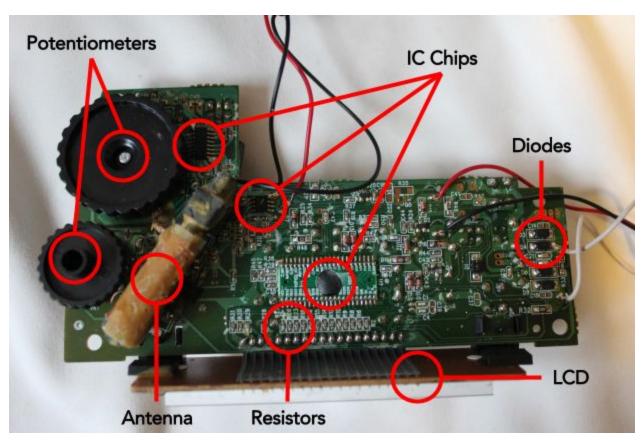
- U2: VCP132 (RCA)
 - This custom made 44-pin IC chip controls timekeeping functions as well as the switch/button functions, displaying the time on the LCD's, and sound adjustments.

- U3: <u>2822M</u> (STMicroelectronics)
 - o This 8-pin IC chip is a dual audio power amplifier.



Note: None of the internal components or IC Chips were produced by Texas Instruments.


Pictures:


The clock radio before being disassembled

The initial view of the inside of the clock radio

The top of the main board

The bottom of the main board

Conclusion:

While researching and deconstructing this device, I learned that it can be really fun figuring out how a device such as this radio works and seeing what each component's role is and how they all come together to make it work. Before I started learning about digital electronics, I never really understood how these devices worked. I took them for granted and assumed that it was just some silly device anyone could design, build and use. Once I began learning more about digital electronics, I gained a greater appreciation for the devices we use on a daily basis.

Cited Sources:

TA2003 Linear Integrated Circuit [PDF]. (2014). Unisonic Technologies.

http://www.unisonic.com.tw/datasheet/TA2003.pdf

Dual Low-Voltage Power Amplifier [PDF]. (2003). STMicroelectronics.

http://www.st.com/content/ccc/resource/technical/document/datasheet/9e/18/f7/cd/2e/b8/43/62/CD00000134.pdf/files/CD00000134.pdf

^{*}Final Report Summary Word Count: 485 Words