

MAKE IT REAL CAD ENGINEERING

CHALLENGE

SPONSORED BY AUTODESK ®

Purpose

The VEX Linear Actuator converts rotational motion into linear motion. This is accomplished using a lead screw and lead nut. The Tube Insert part moves up and down, creating the desired linear motion from a single VEX V5 motor.

Usage of the Linear Actuator

The Linear Actuator was designed to substitute the pneumatic system, as less motors must be used if pneumatics is implemented in a VEX competition robot. By contrast, only one motor is used to create a linear motion and no motors are lost due to VEX pneumatics rules.

Integration into a VEX competition robot

The design of the Linear Actuator focused on compactness, which resulted in the VEX V5 motor being placed beside the linear motion tower. In addition, the base of the actuator has four mounting holes (two on each side) that line up with holes on the VEX parts and metal. The Tube Insert has one hole that can be connected to any VEX part to transfer the linear motion.

How the actuator was modeled

The Linear Actuator was CAD modeled using Autodesk Inventor Professional 2019. The design was created around a VEX V5 motor, downloaded from vexrobotics.com as a STEP and imported into Inventor. Custom parts were modeled and placed into the full assembly, remembering to assign a material to each for future physical data. Other mounting hardware was imported from VEX to use in the assembly, and everything was properly constrained to allow for correct movement and behavior. Finally, stress tests were run on the assembly to ensure the model would withstand the forces applied.

Plastic housing changed to clear green to see internal components.

Internal view of Base housing: Two 45 tooth spur gears rotate together to move rotational force away from motor. Shaft from second gear attaches to lead screw.

× EDR

Side view of Tube assembly: The shaft from the second gear attaches to the lead screw with a coupling. The lead nut is attached to the Tube Insert and is stopped from rotating by the square shape.

Top down view: This shows the two spur gears moving the rotational motion away from the motor to be used with the lead screw and nut.

 \square

Physical data	Material
	Density
	General P
	M
	Volu
	Inertial P
	Ixx [Ixy [
	Ixz -
	?

	S Ma	à		~	m,		5>
Linear Act	uator.iam iP	roperties					×
eneral Sum	mary Projec	t Status	Custom	Save	Physical		
Material					_		
					\sim	Update	
Density		Reque	ested Accu	racy		Clipboard	d
	1.126 g/cm*	N3 Mediu	um		~		
Include C Mass Area Volume Inertial Prop Princ Mass Ixx 2.97 Ixy 0.10 Ixz -0.0	osmetic Weld 0.655 lbma 361.807 in 16.099 in erties ipal Moments 7 lbmass in 6 lbmass in 15 lbmass ir	s (Rela) ^2 (Rela) 3 (Relati G Calculate Iyy 1.8 Iyz -0.	ilobal d using ne 387 lbmass] Include Cen X [-0.5 Y [0.75 Z [1.75 gative ir in s ir] I	e QTY Overr ter of Gravit 54 in (Relativ 51 in (Relativ 51 in (Relativ Center ntegral. zz 1.863	ides y ve re E rof Gravity bmass in	
2		Clos	se	Ca	ancel	App	bly

This window shows the iProperties of the Linear Actuator assembly. Mass, Area, Volume, and other technical data is shown. 10

Materials list

Materials list cont.

LEFT BOTTOM CORNER VIEW

FRONT VIEW

R.08 in -

-R.13 in

1.33 in

2.55 in

42

-- - .13 in

TOP VIEW

3D printing changes

When 3D printed, the Tube Insert would not fit into the Tube because of the flat bottom. The Tube was then changed to have a wider base and the Tube Insert fit correctly.

NNNNNN

V5 Motor attached and lead screw built

Tube attached and gears placed inside base

Base lid attached and final assembly

Linear actuator tested with V5 system

Final linear actuator

STL files cont.

Project takeaways

At the conclusion of this project, our team came away with two critical takeaways. First, we realized the importance of using more 3D design in the future to put our ideas into a virtual environment and try new concepts without building in the real world. We found that this engineering technique allows for a faster and more accurate way of designing and building. Second, our team learned the importance of trial and error and how mistakes can often lead to design improvements. Finally, learning Autodesk Inventor was very helpful to our team since many of us will become mechanical engineers and likely use CAD in our everyday jobs.