

ELECTRONICS ONLINE CHALLENGE 2021

VEX Transmitter and Receiver Part # 0-276-2153

Team 10C (Creation)

Exothermic Robotics

TABLE OF CONTENTS

FINAL SUMMARY REPORT	3
FIGURE 1.0: TOP VIEW	4
FIGURE 1.2: BOTTOM SIDE VIEW	4
FIGURE 1.3: RIGHT SIDE VIEW	4
FIGURE 1.4: LEFT SIDE VIEW	4
FIGURE 1.5: BACK VIEW	4
FIGURE 1.6: VEX LABEL	4
FIGURE 1.7: MISSING FREQUENCY MODULE	4
DECONSTRUCTION PROCESS	5
FIGURES 2.0 – 2.5	5
FIGURES 2.6 – 2.14	6
FIGURES 2.15 – 2.20	7
FIGURES 2.21 – 2.26	8
FIGURES 2.27 – 2.32	9
RESEARCH PROCESS	10
FIGURES 3.0 – 3.2	10
GRAPH 1.0: INTERNAL COMPONENT COUNT	11
GRAPH 2.0: INTEGRATED CIRCUIT COMPONENTS BY MANUFACTURER	11
TABLE 1.0: EXTERNAL COMPONENTS	12
TABLE 2.0: PRINTED CIRCUIT BOARD COMPONENTS	14
TABLE 3.0: MISCELLANEOUS/UNKNOWN PRINTED CIRCUIT BOARD COMPONENTS	17
TABLE 4.0: INTEGRATED CIRCUIT BOARD COMPONENTS	17
WORKS CITED	20

FINAL SUMMARY REPORT:

On a whim, I decided to check out the oldest picture we had in the gallery of the Exothermic Robotics website. Briefly described, it's a group photo of an all-girls team making V-signs over their—presumably victorious—robot. Sweet, I thought, but then I noticed that the girl farthest left in the picture was holding a—block? After inquiring my teammates as well as some of the more senior members of the club, I discovered that this so-called "block" was actually a VEX transmitter and receiver, and that we still had one of them lying around. Visually, it is easy to notice the huge improvements that have been made to the VEX controller over the years, yet what is less obvious are the advancements of the inner components—and that is what piqued my curiosity the most. And thus, the old VEX controller would soon meet its fateful demise, carried out by its greatest mortal enemies: the screwdriver and my own two hands.

The VEX controller beeped its final breaths as I pried open its case. Inside was a whole electronic ecosystem of its own, and included components such as coils, inductors, plugs, capacitors, switches, resistors, transistors, a crystal oscillator, and even items such as an Ethernet port and an LCD. Additionally, little microchips were scattered about on the PCB. With everything disassembled, I began the research process. To quickly summarize the roles of each of the components, coils produce a magnetic field, inductors store energy in a magnetic field, plugs join electrical conductors, capacitors store/release electrical energy, switches connect or disconnect electricity, resistors provide electrical resistance, transistors control the flow of current, and crystal oscillators create an electrical signal with constant frequency. The microchips, on the other hand, proved to be nightmarish to research: I only ended up successfully tracing two of the microchips back to the manufacturer, while the rest remained unidentified. The first chip was manufactured by Microchip Technology and supports bidirectional wire bus and data transmission protocol, while the second chip was manufactured by Rohm and mixes and selects digital/analog signals. Unfortunately, no TI components were found.

Through this process, I not only gained novel perspective about electronic components themselves—from their miniscule size to their vast numbers and indispensable functions—but I also gained a new realization regarding the significance of research. At the beginning of the project, I had little to no knowledge about electronic components, yet after hours of research online, I can confidently assert that I have learned quite a bit. Additionally, I discovered how essential patience, perseverance, and problem-solving are in the research as well as deconstruction process. During the deconstruction procedure, I ran across several issues including a stripped nail, forcing me to brainstorm various solutions—many of which failed. Likewise, while researching, I had to rearrange keywords numerous times to find an answer, and even then, I was often unsuccessful. However, these "failures" in research simply reminded me that investigation is a never-ending process: one can always dig deeper.

Word Count: 500

3

THE EXTERNAL ANATOMY

FIGURE 1.0: Top view

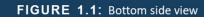


FIGURE 1.2: Right side view

FIGURE 1.3: Top side view

FIGURE 1.4: Left side view

FIGURE 1.5: Back view

DECONSTRUCTION PROCESS

FIGURE 2.0: Removing screws on the front of the controller

FIGURE 2.1: Front screws removed

FIGURE 2.2: Removing screws on the back of the controller

FIGURE 2.3: Three of the back screws removed

FIGURE 2.4: Several screws on the back were too deep for the screwdriver to reach

FIGURE 2.5: Switched to a new screwdriver, solved the problem!

FIGURE 2.6 – 2.7: Using a phone's flashlight to examine a stripped screw

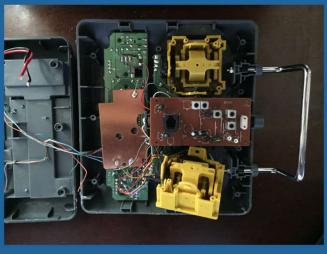


FIGURE 2.16: Inside of the controller. I had to pry it open because of the stripped screw.

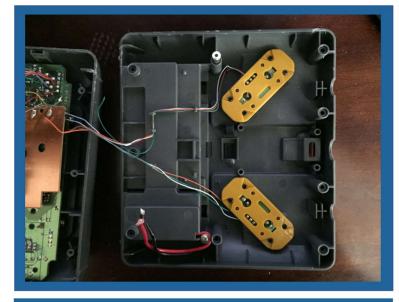


FIGURE 2.9: Other part of the inside of the controller

FIGURE 2.10 – 2.12: Taking off the yellow cover protecting a circuit board

FIGURE 2.13: Yellow buttons for the different channels on the controller

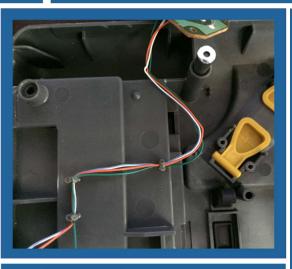


FIGURE 2.14: Wires attached to the case

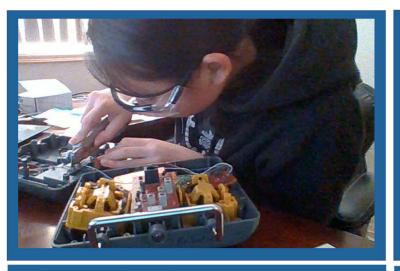


FIGURE 2.15: Using X-ACTO knife to free the wires from the case

FIGURE 3.4: Freeing the battery wire from the case

FIGURE 2.17: Battery wire is freed!

FIGURE 2.18: Pulled out battery wire from case

FIGURE 2.19: Inner part of back of the case

FIGURE 2.20: Outer part of back of the case

FIGURE 2.21: Inside of the other part of the case

FIGURE 2.22: Unscrewing another circuit board from the case

FIGURE 2.23: Unscrewing another circuit board from the case

FIGURE 2.24: Still unscrewing the circuit board



FIGURE 2.25: Loosening the nut attaching the metal handle to the case w/ pliers

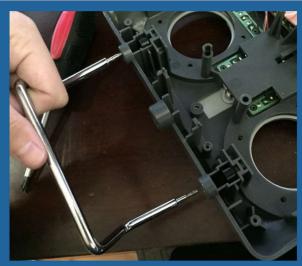


FIGURE 2.26: Removing the handle!

FIGURE 2.27: Outer part of front of the case

FIGURE 2.28: Inner part of front of the case

FIGURE 2.29: Preparing to detach the circuit board from the case

FIGURE 2.30: Silver part of the case

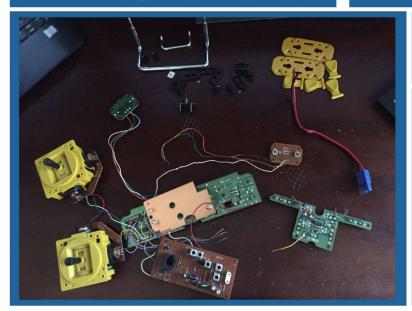
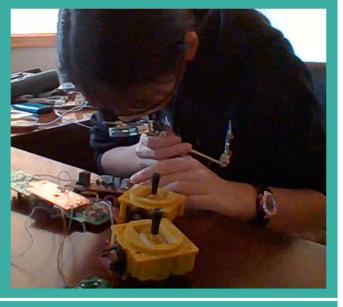



FIGURE 2.32: Tools for the deconstruction process

RESEARCH PROCESS



FIGURE 3.0: Using a magnifying glass to examine the circuit board components

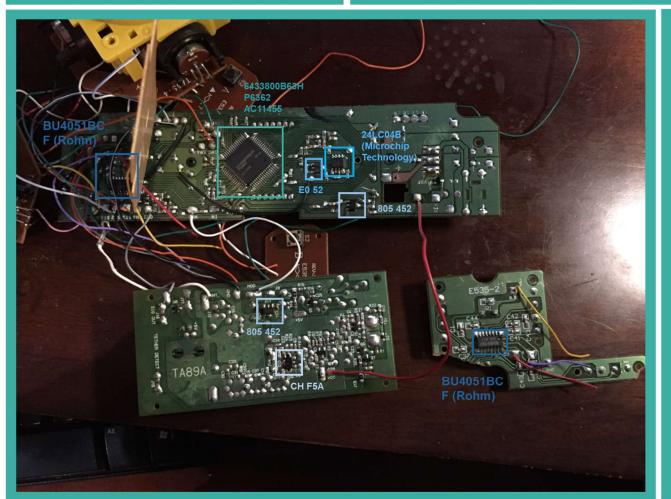
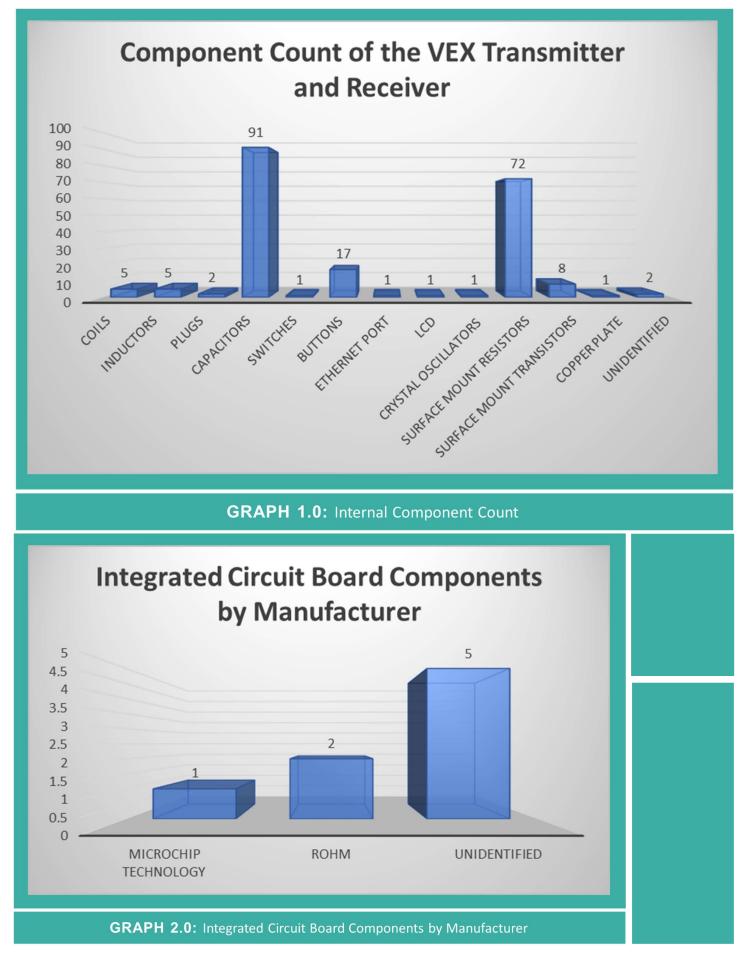



FIGURE 3.2: Layout of all identified chips

TABLE 1.0: EXTERNAL COMPONENTS

External Commences	Description	Function / Commerciate
External Components	Description	Function/Comments
Power Pack	9.6V 1000 mAh Nickel-cadmium	Supplies power to the controller when plugged in
Grey and Silver Case	Durable plastic case Dimension: 10.1 x 9.9 x 5.1 in.	Makes the controller easy to hold and protects the inside components
Joystick (x2)	Black stick surrounded by a yellow case; moves in all directions	Allows person to manually control the robot's movement
Channel 5 and 6 Buttons	Yellow buttons	Enables various actions (depends on the program code for the buttons)

Channel 1, 2, 3, 4 Buttons & Other Buttons	Black oval-shaped buttons	Enables various actions (depends on the button and the program code)
Metallic Handles	Sturdy metallic handles	Allows person to easily hold the controller
Battery Cable	Red and black wires attached to a blue head	Connects controller to the power pack
<section-header></section-header>	Includes CAT. No., manufacturer, and FCC ID	Identifies product as approved by Federal Communications Commission and gives details about manufacturer
Screws and Washers	Wide variety, from silver flathead screws to black panhead screws	Holds case and circuit boards together

TABLE 2.0: PRINTED CIRCUIT BOARD COMPONENTS

Component/Image	Quantity	Function	Other Notes
Coils	5	 Produces magnetic field or creates electrical resistance 	- Can be found as raw wired coil or in other forms
Inductor	5	 Stores energy in a magnetic field when current flows through it 	- 2R7K labelled on it
Plug/Plug Connector	2	- Used to join electrical conductors to create an electrical circuit	- A plug is the male component of an electrical connector
Electrolytic Capacitor	4	- Stores and releases electrical energy in a circuit	 Almost always used in a circuit Manufacturer: Chang Yang Electronics

Ceramic Capacitor	1	- Stores and releases electricity	 Has a large capacitance and small size Fixed-value capacitor where the ceramic acts as the dielectric
Single Pole Double Throw Switch (SPDT)	1	- Connects/disconnects a path in an electrical circuit	- Three terminals: 1 input, 2 output contacts
Push Button Switch	16	- Connects/disconnects a path in an electrical circuit	- Stays on as long as pressure is applied
<section-header></section-header>	1	- Opening to plug Ethernet cables into	- Connects wired network hardware

Liquid Crystal Display (LCD)	1	- Displays information and images	- Black box displayed on screen
Crystal Oscillator	1	 Creates an electrical signal with a constant frequency 	- Placed close to the IC
Surface Mount Capacitors	86	 Charges and discharges electrical supply 	 Small, in large quantities Accomplishes tasks requiring low capacitance values
Surface Mount Resistors	72	 Passively provide electrical resistance 	 Small, in large quantities Lower power dissipation capability
Surface Mount Transistors	8	 Amplifies or switches electronic signals and electrical power 	- F: Low Power Radio Frequency Amplifier

Copper Plate	1	- Dissipates heat	 Placed directly on top of the main IC chip

TABLE 3.0: MISCELLANEOUS/UNKNOWN PRINTED CIRCUIT BOARD COMPONENTS

Component/Image (Best Guess)	Quantity	Function	Other Notes
Resistor	1	 Reduces current flow, divides voltages, adjusts signal levels, etc. 	- Small hole in the center
Unknown White Plastic Object	1	Could not find any information	N/A

TABLE 4.0: INTEGRATED CIRCUIT BOARD COMPONENTS

Manufacturer Part Number Image	Quantity	Function	Further Information	Integrated Circuit Package Types
Microchip Technology (USA)	1	Provides bidirectional, 2-wire bus and data transmission protocol	<u>Overview</u>	 PDIP, MSOP SOIC, TSSOP SOT-23-5 DFN

24LCO4B				
Rohm (Japan) BU4051BCF	2	Multiplexers/demult iplexers that select and mix analog signal and digital signal	<u>Datasheet</u>	- DIP16 - SOP16 - SSOP-B16
Unidentified 805 452	2	Researched device on forums, wikis, and blogs, but cannot come to a firm conclusion.	No Data Found	Unknown
Unidentified E0 52	1	Researched device online and asked knowledgeable family members but still unsure.	No Data Found	Unknown
Unidentified CH F5A	1	Researched device online but found no results.	No Data Found	Unknown

Unidentified 6433800B63H P6362 AC11455	1	Tried all 3 markings and different variations when researching but nonetheless found	No Data Found	Unknown
5433800863H 6433800863H 0514 A011455		no results.		

WORKS CITED

"Capacitor Types." Wikipedia, Wikimedia Foundation, 5 Oct. 2020, en.wikipedia.org/wiki/Capacitor_types.

"Capacitor." Wikipedia, Wikimedia Foundation, 5 Dec. 2020, en.wikipedia.org/wiki/Capacitor.

"Ceramic Capacitors FAQ." What Is the Function of a Capacitor in a Circuit? | Murata Manufacturing Co., Ltd., www.murata.com/en-us/support/faqs/products/capacitor/ceramiccapacitor/char/0028.

"Circuit Board Parts - The Most Comprehensive Introduction Is Here." WellPCB, 3 Dec. 2020,

www.wellpcb.com/special/circuit-board-parts.html.

"Crystal Oscillator." Wikipedia, Wikimedia Foundation, 26 Nov. 2020, en.wikipedia.org/wiki/Crystal_oscillator.

"Electrical Connector." Wikipedia, Wikimedia Foundation, 21 Nov. 2020, en.wikipedia.org/wiki/Electrical_connector.

"Liquid-Crystal Display." Wikipedia, Wikimedia Foundation, 29 Nov. 2020, en.wikipedia.org/wiki/Liquid-crystal_display.

"Reference Designator." Wikipedia, Wikimedia Foundation, 5 Dec. 2020, en.wikipedia.org/wiki/Reference_designator.

- "SMD Capacitor : Working, Types, Advantages and Disadvantages." ElProCus, 11 June 2020, www.elprocus.com/what-isa-smd-capacitor-types-its-applications/.
- "SMD Resistors: Surface Mount Resistor." Electronics Notes, www.electronicsnotes.com/articles/electronic_components/resistors/surface-mount-smt-smd-resistor.php.

"SMT / SMD Capacitor." Electronics Notes, www.electronics-

notes.com/articles/electronic_components/capacitors/smd-smt-surface-mount-capacitor.php.

"Surface Mount Transistor (SMD Transistor): Code, Types, Function." Mobile Phone Repairing, 28 June 2020, www.mobilecellphonerepairing.com/surface-mount-transistor.html.

"Types Of Switches." Electronics Hub, 24 Dec. 2017, www.electronicshub.org/switches/.