
Self-Timing Competition Switch

Jakub Nejedly

Andy Nilson

BARCBOTS – Speed Demons

Team: 11101A

Cupertino, California, USA

Our team designed a self-timing competition
switch. It is a small box that clips onto a
controller using the RJ-45 jack on the back,
and a small hook that latches onto the edge
of the screen. When connected, it enables the
user to run a competition length timed driver
or autonomous period. The user first selects
which mode the switch is in. There are 3
modes. The first is marked with a D, and this
is the driver mode. When
the mode is selected, the
robot is disabled, until
the button is pressed.
Pressing the button
enables Driver control

for one minute and forty-five seconds. Pressing
and holding it for half a second enables the
driver skills challenge, which runs for only a
minute. The next mode completely disables the
device, allowing the robot to function as if no
competition switch was connected to it. The third
and final mode is the autonomous mode, which
functions the same way as the driver mode – a
press starts a fifteen second autonomous period, while a hold starts
a one minute autonomous skills period.

The creation of this competition switch was
something we found necessary when we were programming
our robot. While the controller is able to time itself
when running a program, we had some issues with that.
Every competition requires your robot to be able to do
several different autonomous routines, so we coded in
a selection process for our various autons at the
start of our program. The problem with this was that
the built in controller timer would bypass our
selection process, so we would always run the default
program, not the one we wanted to test. It also would
start the driver period right after the autonomous,
giving no time to evaluate how the auton did. Along

with that, when we use the built in timer, the controller ends the
program when the time runs out, so we cannot check any telemetry
dumped to the screen during the run. We used to run the autons by
using the manual competition switch and timing it, however our autons
were often within 100s of milliseconds of the cut off time, making it
hard to tell if it had been on time. Our competition switch is easier
to use and more capable than the timer built into the controller.

The project, like any good project, started with a breadboard
and volt-meter. We had to decode which signals in the RJ-45 jack did
what. The first thing we built was just a manual competition switch,
to make sure our map of the signals was correct. Once we had that
knowledge, we were able to create a schematic for our competition
switch. There were several things we needed to do. The first was to
power the thing. Through previous testing, we knew that an ATTiny-861
clocked by an external crystal would only draw a small current. Along
with that, we knew that there needed to be some power coming from the
controller itself for the normal competition switch to be able to
work. We created a small circuit that allowed us to siphon off the
power “leaking” through the data-pins to power our processor. We also
connected some GPIO pins back to the
data pins on the controller, and
some to the mode selection switch.
This allows us to control which pins
were active through the microchip.
We created both the schematic and
the final board design in AUTODESK
Eagle. Since most of the parts we
used were not in the existing
libraries, we created our own
library for them, with the schematic
symbols, board footprints and also
3D packages, which were created in
Fusion 360. Since this project has been in development for a while,

the newest version of Fusion 360 was always used,
as it was updated and improved. Thanks to this
library, and the unique integration between Fusion
and Eagle, we were able to export the board
directly into Fusion, with a replica of all the
parts modeled onto it. This allowed us to design a
well-fitting case for the electronics. We were also
able to design the clip of our competition switch
by using boolean operations to cut out the shape
from a model of the controller. There were some
problems with this, since the boolean operation was being done on a
hollow body with imperfect seals, which resulted in weird structures,
such as zero width walls. To solve this, we used the sweep tool, with

a guiding rail, to create extra bodies which filled
in the gaps and fixed our issues. We also wanted
some markings in a different color on the face of
our switch. To do this, we designed them as a
seperate component, which we then exported as a
single mesh. Once we had that, we sliced the Gcode
for both the main body and the markings, then
modified the Body Gcode by adding a filament change
call after the first layer. We then printed the 2
layers of color for the text, and changed back to

the main body color. Finally, we wrote a short program in the Arduino
IDE which would define when our microchip would activate and
deactivate the control signals, based on the inputs from the button
and slider switch.

Our team learned a lot about creating electronic circuits, which
is outside the regular framework of Vex robotics, even though it is
tightly connected to it. We also learned about some limitations of
CAD software, and had to design creative workarounds for them. We
gained a lot of experience in different workflows for 3D modeling, as
the design process for all the various electronic parts was very
different to the process of designing the body of the competition
switch. Finally, we learned the importance of perseverance, as we
iterated through multiple versions of the design.

