
Reverse engineering a VEX 
IQ Controller


Team 13765C; London, United Kingdom


By Ali Juma


Reverse engineering a VEX IQ Controller 1



Why I chose to reverse engineer a controller

I have chosen to reverse engineer a VEX IQ Controller (1st Generation). But why 

would I want to reverse engineer a controller specifically? Firstly, a controller is 
ultimately a communication device. Thus, it intrigued me to understand how the 
VEX IQ Controller communicates. The controller has joysticks as well as buttons, so 
it has a variety of input methods that I want to understand. It is also powered by a 
battery, and can charge it by itself, so I am intrigued by the way it does that.


Components


After I opened it up, I found this, the circuit board. It has buttons, joysticks, and 
chips on it. I am going to identify the various components residing on it. I 
highlighted different components in various colours, and I will discuss them in turn.


Clock

This seems to be a quartz crystal clock, which are used to provide a steady 

pulse to synchronise the components. Reading the value printed on it, it seems to 
be a 16 MHz clock, which means that its signal oscillates around 16,777,216 times a 
second!


Reverse engineering a VEX IQ Controller 2

The front of the circuit board



Microcontroller


This chip is the microcontroller, a small chip that drives the entire system. After 
some research, I found that this model is the Texas Instruments MSP430F2252, and 
it has 16 KB + 256B of flash memory and 512 bytes of RAM.


Looking at the data sheet, this is the pinout:


Reverse engineering a VEX IQ Controller 3

A closeup look at the microcontroller



And this is a diagram of the inside:


It has many I/O ports and a small processor inside of it. It controls all the other 
various components in the controller.


Linear regulator


This chip is the LP38690 linear regulator, and it is used to manage the power 
going into a component. I found in the data sheet that it takes in anywhere from 2.7V 
to 10V, and outputs 1.8V. I am not sure what components it provides power for.


Reverse engineering a VEX IQ Controller 4

A closeup look at the linear regulator



Shift register


This chip is the HC166 shift register. Shift registers are used to store data, and 
output that data by shifting out bits one at a time. This one can hold 8 bits. Using a 
multimeter, I found that all the buttons and joysticks are connected to it, and that it 
is connected to the microcontroller, so I think that it holds the buttons’ and 
joysticks’ values and outputs them to the microcontroller.


Power management


Reverse engineering a VEX IQ Controller 5

A closeup look at the shift register

A closeup look at the power management chip



This chip is the BQ24020, and it manages power. It accepts power over USB 
and from the battery and can tell the status of the battery, manages the charging of 
the battery, and outputs power for the other components.


Buttons


The button mechanism is a rubbery body with a graphite pad inside of it, which 
is suspended over some metal contacts. When you press down on a button, the 
conductive graphite pad touches the metal contacts and connects them, which 
allows electricity to flow from one contact to another. This is then read by other 
components.


Joysticks


Reverse engineering a VEX IQ Controller 6

Diagram of buttons

Diagram of one of the joysticks



A joystick is a plastic and rubber body that can rotate freely, connected to two 
potentiometers, one for each 2D axis. This is a simple diagram I made of one of the 
potentiometers, to illustrate how they work:


As you move a joystick along an axis, that axis’ potentiometer will have a wiper 
that moves along a resistive strip. The resistive strip is connected between positive 
and negative terminals. The resistance is then put out to the output pin. The 
resistance of the output shows how far along that axis the joystick is. This is then 
read by components.


Conclusion

In conclusion, the VEX IQ controller is made up of a lot of parts, and they all 

work in an orchestrated way to communicate what the user is doing. I learnt how 
power from the battery and coming externally is managed by the device. In 
addition, I learnt how buttons and joysticks work, and how the signals from them are 
processed. I also attempted to connect a cable to the RJ45 port on the controller, 
which it uses to communicate, and tried to analyse the signals on the other end of 
the cable to figure out how it sends signals, but unfortunately I do not have an 
oscilloscope and I found nothing using a multimeter, so I did not put this in my 
report.

Reverse engineering a VEX IQ Controller 7


	Why I chose to reverse engineer a controller
	Components
	Conclusion

