
2024 VEX CODE VR SKILLS CHALLENGE

ELEMENTARY SCHOOL DIVISION

Team 15A Crescent Crushers

Team Members:

Noah

Aliya

Krish

Final Score: 83 points

Time Remaining: 2 seconds

Crescent Elementary School | Anaheim CA | January 2024

region VEXcode Generated Robot Configuration
import math
import random
from vexcode_viqc import *

Brain should be defined by default
brain = Brain()

drivetrain = Drivetrain("drivetrain", 0)
intake_bumper = Bumper("IntakeBumper", 3)
front_optical = Optical("FrontOptical", 4)
intake_motor_group = Motor("IntakeMotorGroup", 5)
arm_motor_group = Motor("ArmMotorGroup", 6)
front_distance = Distance("FrontDistance", 9)

endregion VEXcode Generated Robot Configuration
--

Project: VEXcode Autonomous VR
Author: Team 15A Crescent Crushers
Created: 12-29-2023
Description: VEXcode VR Python Project, https://vr.vex.com/
File Name: 15A_Crescent_Crushers.vrpython
Notes/Credit: Thanks to VEX for some of the good ideas and concepts came from the VEX activity web site
:
education.vex.com/stemlabs//cs/vr-activity-labs/viqrc-virtual-skills-full-volume/pick-it-score-it
--

Constants
Numbers of degrees to spin the intake to pickup block
INTAKE_ROTATE = 90
Number of degrees to spin the intake to score block in goal
OUTTAKE_ROTATE = 130
Number of degrees to raise arm to score block in goal
ARM_MOTOR_OUTTAKE_LEVEL = 315
Number of degrees to raise arm to "pluck" a block from a flower
ARM_MOTOR_PLUCK_LEVEL = 200
Number of degrees to raise arm to "scoop" up blocks
ARM_MOTOR_INTAKE_LEVEL = 10
Length of bot from the center to the end of intake
BOT_LENGTH = 264
Length of bot from the center to the end of intake
BOT_LENGTH_HALF = BOT_LENGTH * .5
The additional distance bot travels to goal to score blocks in millimeters
GOAL_DIST = 10

Description: Drives the robot forward a certain heading and distance
Input: blockHeading = heading robot moves towards
blockDistance = distance robot moves
Output: none
def drive_forward(blockHeading, blockDistance):

 # Turn to block
 drivetrain.turn_to_heading(blockHeading, DEGREES)
 # How far we need to drive to get to block
 drivetrain.drive_for(FORWARD, blockDistance, MM)

Description: Drives the robot backward a certain distance
Input: blockDistance = distance robot moves
Output: none
def drive_reverse(blockDistance):

 # how far we need to drive to get to block
 drivetrain.drive_for(REVERSE, blockDistance, MM)

Description: Spins intake to collect blocks. Spins forward until intake bumber sensor is pressed.
Input: none
Output: none
def intakeBlock():

 while not intake_bumper.pressing():
 intake_motor_group.spin(FORWARD)

 wait(.005, SECONDS)

Description: Sets robot arm to "pluck" level and drives forward at same time (wait=False)
Moving arm while driving at same time , saves run time.
Pluck is different then Scoop, it gets blocks from inside flowers without bumping other
blocks
Input: blockHeading = heading robot moves towards
blockDistance = distance robot moves
Output: none
def setupForIntakePluck(blockHeading, blockDistance):
 # put arm to the right level to pick up
 arm_motor_group.spin_to_position(ARM_MOTOR_PLUCK_LEVEL, DEGREES, wait=False)
 drive_forward(blockHeading, blockDistance)
 arm_motor_group.spin_to_position(ARM_MOTOR_INTAKE_LEVEL, DEGREES, wait=False)

Description: Sets robot arm to "scoop" level and drives forward at same time (wait=False)
Moving arm while driving at same time , saves run time.
Input: blockHeading = heading robot moves towards
blockDistance = distance robot moves
Output: none
def setupForIntakeScoop(blockHeading, blockDistance):
 # put arm to the right level to pick up
 arm_motor_group.spin_to_position(ARM_MOTOR_INTAKE_LEVEL, DEGREES, wait=False)
 drive_forward(blockHeading, blockDistance)

Description: Sets robot arm to outtake level and drives forward at same time (wait=False)
Moving arm while driving at same time , saves run time.
Input: blockHeading = heading robot moves towards
blockDistance = distance robot moves
driveType = after picking up block drive forward or reverse to goal
Output: none
def setupForOuttake(blockHeading, blockDistance, driveType, armLevel=ARM_MOTOR_OUTTAKE_LEVEL):
 # Raising arm to level to dump into goal(no wait)
 arm_motor_group.spin_to_position(armLevel, DEGREES, wait=False)
 if driveType == "f":
 drive_forward(blockHeading, blockDistance)
 else:
 drive_reverse(blockDistance)

Description: Spins intake to score blocks. Spins in reverse until optical sensor doesn't see block.
Input: none
Output: none
def outtakeBlock():
 # spinning intake in reverse to dump the block when the arm isn't moving up
 while arm_motor_group.is_spinning() and front_optical.is_near_object():
 wait(.005, SECONDS)
 while front_optical.is_near_object():
 intake_motor_group.spin_for(REVERSE, OUTTAKE_ROTATE, DEGREES)
 wait(.005, SECONDS)

Description: Calculates distance between two points using the pythagorean theorem.(a^2 + b^2 = c^2)
Input: (x1,y1) position of robot
(x2,y2) position of destination (block or goal)
Output: Distance in millimeters
def calculate_distance(x1, y1, x2, y2):
 return math.sqrt(math.pow(x2 - x1, 2) + math.pow(y2 - y1, 2))

Description: Using trigonometry equation of a right angle. (a^2 + b^2 = c^2)
sin theta = opp/hyp
cos theta = adj/hyp
tan theta = opp/adj
Input: (x1,y1) position of robot
(x2,y2) position of destination (block or goal)
Output: heading in degrees
def calculate_heading(x1, y1, x2, y2):
 if x1 == x2:

 if y2 > y1:
 hdg = 0
 else:
 hdg = 180

 else:
 theta = math.atan((y2 - y1) / (x2 - x1)) * (180 / math.pi)
 if x2 > x1:
 hdg = 90 - theta
 else:
 hdg = 270 - theta
 return hdg

Description: Using trigonometry equation of a right angle. (a^2 + b^2 = c^2)
sin theta = opp/hyp
cos theta = adj/hyp
tan theta = opp/adj
Input: (x1,y1) position of robot
(x2,y2) position of destination (block or goal)
Output: heading in degrees
def full_park(drive_heading, drive_distance):
 # turn lineup towards supply zone for reverse driving
 drivetrain.turn_to_heading(drive_heading + 180, DEGREES)
 # start moving arm forward without waiting to save time
 arm_motor_group.spin_for(FORWARD, 800, DEGREES, wait=False)
 # drive back into supply zone
 drivetrain.drive_for(REVERSE, drive_distance, MM)
 # straighten out robot to full park
 drivetrain.turn_to_heading(180, DEGREES)
 drivetrain.drive_for(REVERSE, 60, MM, wait=False)
 # full park flip backwards
 arm_motor_group.spin_for(FORWARD, 500, DEGREES)
 arm_motor_group.spin_for(REVERSE, 1500, DEGREES)

Add project code in "main"
Description: Our main function that runs our program,
it uses a grid map, control lists, loops, and function calls.
Grid Map : Our program sets up a coordinate grid on the playground where the initial starting position
at the lower left
goal two position is x=0, y=36 (millimeters). We know that the playground grid is set up
using squares that are each 300 x 300 (mm).
Controls : The program uses a big control list that holds data letting the robot know where to start
picking up blocks, where to take them to score and what type of way to pickup blocks.
Loops : We used a for loop to loop through each row in our list.
Functions : Inside the control loop we make calls to different functions that provide the robot actions.
def main():
 # Set Drivetrain and Motor Velocities
 drivetrain.set_drive_velocity(100, PERCENT)
 drivetrain.set_turn_velocity(100, PERCENT)
 intake_motor_group.set_velocity(100, PERCENT)
 arm_motor_group.set_velocity(100, PERCENT)

 # A list containing rows of data that have the control details for robot to perform different actions.
 # Example of row contains:
 # [x pos blk, y pos blk, x pos goal, y pos goal, heading at goal, intake collection type (scoop/pickup
), drive type after collection]
 # [300 , 900 , -70 , 1270 , -45, , "s
" , "f"]
 control_list = [
 [-300, 600, -70, 1270, 315, "p", "f"], # purple 2, goal 3
 [300, 1500, -70, 1270, 315, "p", "r"], # purple 3, goal 3
 [900, 1500, -70, 1270, 315, "p", "r"], # purple 4, goal 3
 [300, 900, -70, 1270, -45, "s", "r"], # purple 1, goal 3
 [300, 1200, -125, 175, -135, "s", "f"], # red 1, goal 2
 [600, 300, -125, 175, -140, "s", "f"], # red 2, goal 2
 [600, 600, 1600, 200, 140, "s", "f"], # purple 1, goal 1
 [900, 900, 900, 1200, 0, "sd", "f"], # scoop purple 3, bump red 3
 [900, 1200, 1590, 210, 135, "d", "f"], # dump/score purple 3, goal 1
 [1900, 880, 999, 999, 999, "fp", "r"]] # collection zone purple 4 / full park

 # initial robot position at lower left goal 2
 curr_x = 0
 curr_y = 36

 # loop through each row in control list
 for row in control_list:
 # calculate distance and heading from current position of robot to the block
 # subtract out robot distance from body to intake of robot from the block
 drive_distance = calculate_distance(curr_x, curr_y, row[0], row[1]) - BOT_LENGTH
 drive_heading = calculate_heading(curr_x, curr_y, row[0], row[1])

 # pickup a block either using a scroop or pluck (for flowers)
 if row[5] == "s" or row[5] == "sd":
 setupForIntakeScoop(drive_heading, drive_distance)
 if row[5] == "p":
 setupForIntakePluck(drive_heading, drive_distance)
 if row[5] == "fp":
 full_park(drive_heading, drive_distance)

 # spin intake to collect block
 intakeBlock()

 # calculate new x and y position after collecting block
 curr_x = curr_x + drive_distance * math.sin(math.radians(drive_heading))
 curr_y = curr_y + drive_distance * math.cos(math.radians(drive_heading))

 # calculate distance and heading from current position of robot to the goal
 drive_distance = calculate_distance(curr_x, curr_y, row[2], row[3])
 drive_heading = calculate_heading(curr_x, curr_y, row[2], row[3])

 # go to score or to bump block
 if row[5] != "sd":
 # get distance to goal with added goal distance over the container
 drive_distance = drive_distance + GOAL_DIST
 # raise arm to score, drive forward or backward to goal
 setupForOuttake(drive_heading, drive_distance, row[6])
 # turn to same outtake heading at the goal
 drivetrain.turn_to_heading(row[4], DEGREES)
 # score block
 outtakeBlock()
 else:
 # sd = scoop and drive/bump after picking up a block
 drive_distance = drive_distance - BOT_LENGTH
 # bump red block off peg
 setupForIntakeScoop(drive_heading, drive_distance)

 # calculate new x and y position after scoring/bumping block
 curr_x = curr_x + drive_distance * math.sin(math.radians(drive_heading))
 curr_y = curr_y + drive_distance * math.cos(math.radians(drive_heading))

VR threads — Do not delete
vr_thread(main)

	2024 VEX CODE VR SKILLS CHALLENGE.pdf
	15A_Crescent_Crushers.vrpython.pdf

