Title : 8391W’s Entry

vEXxX copEe ve

By Student : Ethan Wang
Team Number: 8391W

Location of team : Markham, Ontario

What Can My Code Do?/ What Does It Include?

* Inmy code, It contains 2 different sensor detection: Front
Distance sensor and Intake Bumper sensor. But, In total | use

vExra

VEX ROBOTICS a total of 6 sensors, when you include the sensors | use in
ROBOTICS COMPETITION . the monitor. So, technically I am using 6 sensors.
Virtual Skl"S MatCh RGSU'tS * My code is completely controlled by “My Blocks”. |
have a “Main Path”, where | connect all “My Blocks”
8391W then | put my codes into My Blocks. How my path
works is that the codes run in each “My Block” and
// Caution Tape Wonder // whenever one’s action is done, the next “My Block”

does what it is supposed to do. The whole purpose of
“My Blocks” are supposed to separate the path into
smaller sections to be more easily edited.

Score: 82 points

Skills Stop Time: 0 seconds remaining

* Inside of my code, | have a “Security System”, where |
check if have a block when I’'m supposed to, and If |
do not have it, | will go forward by a little bit and
intake again. This makes sure that | won’t miss a block
and | also increase my variable called “Error” by 1.

How Did VEX VR Help Improve My Skills?

Did you know, In fact | started VEX 3 months ago? Yes, not start competing,
but introduced to VEX 3 months ago. | started VEX in my school’s VEX club. |
first started to build the hero bot for this year (Byte) and | got to learn some
decent coding in VEXCODE 1Q. Then, | was introduced to VEX VR. | had a lot
of experience in other coding languages (Lua, Python, Java, and Scratch) so |
was really interested in VEX VR. | started practicing it day by day and
eventually once | understood the logic, variables, and the unique “My
Blocks” of VEXVR, | soon became the best coder in my club. After a month,
my friend invited me to a team he just created in Caution Tape. When | first
went, it was just us two on the Caution Tape team. He knew | was good at
coding, so he decided to add me on the team. A few days after he joined, he
contributed greatly in assisting with the teachers to teach me advanced turns
and driving straight with Brain Inertial/Gyro. | learned a lot in VEX VR and |
put all my knowledge into VEX 1Q. Now, | have the knowledge to code
complicated equations and logic systems in VEX I1Q thanks to the online
practice | had in VR when | did not have a physical robot yet. VR is great for
newbies, as there are many features that IQ does not have and many
features that IQ has and VR does not have. Thanks to the coding practice VR
gave me, | was successful in getting higher scores autonomous in qualifiers.

Full View Of Code
ﬁﬁlﬁ.’;‘.’;ﬁi‘ﬂﬁﬂ. ,

elain ssznomaon driving code.

-m

Miain auionamzus driving cods. This ina My Black callael “ILASE ARM” which in for myacaring. |

1 saparied ey enire route inse smalber paths called
“BlockDbtainads™ iing My Siocks. | uss their Define
block &2 ssparsss ihw pasha, 4o | can wee which “BlockOblsinedd™

nuide the code it ah inchdes ancther My Bock crlled “DUTRUT".

robbat hsd the afficiency 1o finith it taskn bafors e time e up. Main suionomous driving ceds.

Misin autonomou deiing cods. Main sutoncmon drivng code.

ng ¥ Defina™ Bindk for - -,
| ican just uns “RAISE ARSE 52 1t will do Sha snkirs scoring procadure

e it v m@m_p

um right * l'uro.h:p‘-.

tum et * hrmm'

This cods raises the digital “Byie” arm dor 450 degress then 2 uses the DUTPUT waa. active during mn ervos: Inaicle the *Detine’ biock from She My Blacka,

oo which dixgensss out the cubs, Shan the “Byie” amm goss back down agan.
Mo I £an say kncw whrs | pat oy durpine cade and | can come to this "D
My Black tods 52 cenhgues smyihisg | nasd.

bt hmﬂw-'
Vvl kanch of coden b combine togeiter i maks o piece of the whols roule. S s lfl) e b b forweed < o) v B o r ¢ D) = b

ﬂ“m'hmmv.

drive v hc@ mme b

My “Security Syriem” which first checks if the

' in o hinck in frent of the robot. 1 taers i indesd 3 block,

& will intaks then after » fww millisscznc, and il check if
the Inttakcs Burmnper dertecty the lock imide of fha robot s inkake.

tum right = for () degmm B immvhamml

drivn e = for () v e B Thin ghece of code maken sure that ey veriable “Erron” o ast £ 0 af the sht. tum right = ﬁ-@m »

oot calid - em Y o chack it aach of vy versen 1f 2 innt thare, It il oo formard By m iy i, than it il apin the intles,
K han & walua 24 But, au you will ses later in my code, | only e cos vanssie cillsd ared R will munsms the block i in. Sinca it was axpactsd that
s Armidiorieap « down v "m clugrem + ff nd con' wait “brvee” ard if would Ew increased by 1 whersver a block B i iuzpoed ks the Intaka Bumper s preased, bt it mams, o wher hagpant b that

Errors incrasses by 1which ssla me how much miscaicsiation | hed in the

win Ambtoteteng + wp = bor () W B deim forward + for) mm v B

deivn reverss ® for () e ot tum right = for () degrem B

Than, it wil increns “Error” by 1, and st the en if my run, §can use the Monitor b i foreed = tor () mm v P

w4l much nsbe rying s take. Tha

My “Smcunity Syvtem” which fievt chack f the
v 1 lock in from oF the robot, IF thers i indesd o black, ey “Smcurity Syutem” which firvt chacka if tha
o ek in frant of e rabiot. f thers i indesd m bizck,

match at tie VR rabo cosly i sewid it miassd anyhing and Imssed | can just wait
e, chesck my “Brvoes

h—no

Iaparated my antis routs into imaller parth calisd ~Biod:DbSsineds ~ uung My Block,
|1usm thair “Define’ Einck to sepanes the garba, vo | can ses which “BiockDbtansd s~ win

Main mutznomou driving cods.

drb rvares v m@m. b

wm ieft = for () degen

Itwill intakn then afier a few mileconds, sd 1 will check i
e Intake Bumper cebects She biock rmide of thw rabst s inake. I will imtakn then atter a few miliveconds, sd 1 will check #
#ha Imtaks Burnper esscts tha biock imids of the robot s intaks.

¥ it it shaes, 1t will g farwaed by o tiny bit, Sxam it will pin the intaio,
and il mmmsrem the block e e Sinc e od thut Mt it theare, Hwill go Farsard by o tiny kit, then it will spin the intaks,
the Intaks Bumper waa prauaed, but # waari, —— and i will amures s bleck inin. Sincs it way sxpacied that

Py “Sacurity Sywam which first chacks i e
rain a block in front of the robet. thers iy indesd & bl
It wall imiaien them aFtar & Few millascores, and It wil

Wain svionomou driving cads. Eerar increases by 1 which bl me haw much miscalculations | had in the run, | % Intake Burmger wea prened, but i v, 12 what heppem i thit
3| Emora increasan by 1 which tals ma how much miscakculstions | had in Se ran.

debvs forwend = f"@ L ‘weiton during an armer. Inscde the “Duéine” otk from tes My Blocks, | save ol kinds of the Insake Bumper detects the biock inside of the rosc

codes bz czmbing together to maks cne pisce of the whols muts. it nnt thars, It wil o forward by a tiny b, then it v

and it will maume the biock i in. Since i wn sxpecie;

r [—— tha Intake Bumper mas pressed, but it maant, s what
Ny Seceriy Jpent’ which fiat chacinf she Erron incremen oy 1 which el me how mach micaic
v iua ok in front of the robot. IF there in indesd a black, BinckObtsinadiz
I willintaiee then adier o few millnscondy, and 1 will check if
tha Irriaks Bumpar desscts a biock imids of the rabeos intaks. BlockDbtsined0s
¥ it iar'® thars, B will g Forwaed by o tiny bit, than it will ypin the intske,
d it wil thw black i in. Since it S
|t Intake Bumpar wan premed, but st 1 what happa n that [T
| 12y Saceriy Syvton- which et i te | trror ncrauan by 1 which sl me b much mikcalculation | had in the
e i a kg in #rom oF the rabot. IF thare in indssd a block, SiSCh—
It il intakce then aéter a few millsconds, s 1 will check if BleckObizinedi?
By~ Sacurity Sysiem” which firt checku i the the Intake Bumper desects the bilock imide of the mbs?y inteke.
re ia.a bliock i front of tha rabot. IF thers in indeed & biock, ¥ it e shaew, B will g2 Forwaed by & tiny bit, Shee 1t will upn the imtske, BiockDirtainedta

B will intakw then after o few milivecznds, and 1 will check if and it il anurs the block b i Since 1w eapeied that
the Intakm Bumpar drtacts tha binck imids o the robot s intsks. the Irrtaks Burmper wan premed, but & wanni'| 1o what happam o that

Hit bt thare, 1 will go ferward By a tiny ki, than it wail spin the intaks, Errana increave by 1 which bells me how much miscalculation |had in e
e if vl ammima tha block u in. Sincs it wan expecied that
e Itk B wn praweed, but i wawn's, v what Rappens i that

Ermary incraaven by 1 which Sslla me haw muds miscalcslstion | had in the rn.

deivn forward + for () mm=

* Zoom in for a closer look*

apin IntakeMaiorGroup

-—-o] The Route

| had all my motor groups set to a velocity of 100% to make sure

that | had maximum strength and speed. This made sure that the
robot had the efficiency to finish it's tasks before the time runs wp.

These blocks are the very center
e of all my code. Without them,

This piece of code makes sure that my variable "Errors” is set to 0 at the start.

I e my code would not work at all.

has a value of. But, as you will see later in my code, | only have one variable called

“Error” and it would be increased by 1 whenever a block that is supposed to be

This code combines the smaller

Then, it will increase "Errors” by 1, and at the end if my run, | can use the Monitor to

see how much cubes | had missed trying to take. This is useful when I'm too tired to

paths (BlockObtained)
together and it also sets my

| separated my entire route into smaller paths called “BlockObtained#" using My Blocks.

| use their "Define” block to separate the paths, so | can see which "BlockObtained#” was

s variable to 0 and sets my
velocities to 100%. On the top, |
set “Outnum” to 1 and
“ArmNum” to 450.

define

RAISE ARM

This is a My Block called "RAISE ARM" which is for my scoring. |
nside the code it also includes another My Block called "OUTPUT".

Instead of adding this code into every "Define” Block for "BlockObtained#",

| can just use "RAISE AEM" so It will do the entire scoring procedure.

This code raises the digital "Byte” arm for 450 degrees then it uses the OUTPUT
code which dispenses out the cube, then the "Byte™ arm goes back down again.

Mow | can easy know where | put my dumping code and | can come to this “Define”™

My Block code to configure anything | need.

spiné. ArmMotorGroup * wup * for AmBNum degrees ¥ "

spin ArmMotorGroup * down * for ArmMNum degrees * 4 and don't wait

RAISE ARM
(Scoring Code)

This code is a My Block
scripted for the online
Byte to raise his arm,
spin his outtake, then
drop his arm.

OUTPUT

Pretty self explanatory.
Spins the outtake of the

[_ _ o \ online Byte for 1 turn.
Since OUTNUM is set to 1, it spins for 1 turn

spin IntakeMotorGroup * outiake * for OutNum tums * 4 and don't wait

Monitor

X IntakeMotorGroup is spinning?

false

X IntakeMotorGroup velocity in %

X IntakeBumper pressed?

false

FrontDistance found an
object?

false

X FrontDistance in mm

X FrontOptical found an object?

false

X Errors

The Monitor

Inside the monitor, | get to see values and
true/false of Sensors and Variables. At the
end of every run, | check my custom
variable “Errors”. What it does is that |
have a security system that checks if | had
any miscalculations about the positions of
the cubes on the map. | can see the
number of cubes that | would’ve missed if
| did not have a “Security System” so |
often fix my code thanks to the Monitor
and it’s amazing functions. | use a total of
one variable from my “Security System”,
which | will show later, and | also use 6
different sensors in my Monitor.

define g, KObtained01

Main autonomous driving code.

turn right * for @ degrees ’

drive forward fnr@ mm~* P

My "Security System” which first checks if the

re is a block in front of the robot. If there is indeed a block,

It will intake then after a few milliseconds, and It will check if

the Intake Bumper detects the block inside of the robot's intake.

If it isn't there, It will go forward by a tiny bit. then it will spin the intake,
and it will assume the block is in. Since it was expected that

the Intake Bumper was pressed, but it wasn't, so what happens is that

Errors increases by 1 which tells me how much miscalculations | had in the run.

if FrontDistance * found an object? _ then
stop driving

spin IntakeMotorGroup * intake * for o turns * .

if IntakeBumper ¥ pressed? = then

stop IntakeMotorGroup

drive forward * for@ mm ¥ ’

spin IntakeMotorGroup * intake * for o turns * .

Path #1
(BlockObtained01)

The first path in my route. Inside
are the motion/drivetrain blocks
for the path and my “security
system”. | explained my
“Security System” in the picture.

My "Security System™ which first checks if the

re is a block in front of the robot. If there is indeed a block,

It will intake then after a few milliseconds, and It will checl if

the Intake Bumper detects the block inside of the robot’s intake.

If it isn't there, It will go forward by a tiny bit, then it will spin the intake,
and it will assume the block is in. Since it was expected that

the Intake Bumper was pressed, but it wasn't, so what happens is that

Errors increas es by 1 which tells me how much miscalculations | had in the run

FrontDistance * found an object? ‘
n

spin IntakeMotorGroup * intake * fnro tums * .

e

|

stop IntakeMotorGroup *
e T r

Path #2
(BlockObtained02)

The second path in my route. Inside
are the motion/drivetrain blocks for
the path and my “Security System”,
which | have explained in the picture

define) LObtained02

Main autonomous driving code.

turn left * for @ degrees .

spin IntakeMotorGroup * outiake ¥ for o turns * ’
drive reverse * for @ mm * ’

turm right * for B degrees .

drive forward * for @ mm ¥ ’

My ~Security System”™ which first checks if the

re is a block in front of the robot. If there is indeed a block,

It will intake then after a few milliseconds, and It will check if

the Intake Bumper detects the block inside of the robot's intake.

If it ism't there, It will go forward by a tiny bit, then it will spin the intake,
and it will assume the block is in. Since it was expected that

the Intake Bumper was pressed, but it wasn't, so what happens is that

Errors increases by 1 which tells me how much miscalculations | had in the run.

if FrontDistance * found an object? = then

spin ArmMotorGroup * up * for @ degrees ‘am‘l don't wait
spin IntakeMotorGroup * intake * for o tumns * .

spin ArmMotorGroup * down * for @ degrees * 4 and don't wait

stop IntakeMotorGroup *

else
drive forward * fur@ mm * '

spin IntakeMotorGroup * intake = foro turns = ’

change Emmors * by o

Path
BlockObtained03

The third path in my route. Inside are
the motion/drivetrain blocks for the
path and my “Security System”,
which | have explained in the picture

define piockObtained 04

Main autonomous driving code.

drive reverse v fur@ mm * .
turn left * for m degrees ’
drive forward = fur@ mm * .

spin IntakeMotorGroup * outlake * for o turns * ’
drive reverse * for m‘ mm * .

turn right * for @ degrees .

drive forward * for @ mm * ’

My "Security System™ which first checks if the

re is a black in front of the robot. If there is indeed a block,

It will intake then after a few milliseconds, and I will check if

the Intake Bumper detects the block inside of the robot’s intake.

If it ism't there, It will go forward by a tiny bit. then it will spin the intake,
and it will assume the block is in. Since it was expected that

the Intake Bumper was pressed, but it wasn™t, so what happens is that

Errors increases by 1 which tells me how much miscalculations | had in the rum.

FrontDistance * found an object? ‘

stop driving

spin IntakeMotorGroup * intake * fnro tums * .

Path #4
(BlockObtained04)

The fourth path in my route. Inside
are the motion/drivetrain blocks for
the path and my “Security System”,
which | have explained in the picture

define g, ¥Obtainedos

Main autonomous driving code.
turn left * for @ degrees ’

drive forward = fnr@ mm * .

spin IntakeMotorGroup * ouwtlake * for o tums * ’

drive reverse ¥ fnr@ mm * ’
spin ArmMotorGroup * wp * for @ degrees ¥ ’
turn right = for @ degrees ’

drive forward * fnr@ mm * .

My "Security System” which first checks if the

re is a block in front of the robot. If there is indeed a block,

It will intake then after a few milliseconds, and It will check if

the Intake Bumper detects the block inside of the robot’s intake.

If it isn't there, It will go forward by a tiny bit, then it will spin the intake,
and it will assume the block is in. Since it was expected that

the Intake Bumper was pressed, but it wasn't, 5o what happens is that

Errors increases by 1 which tells me how much miscalculations | had in the run.

if FrontDistance * found an object? = then

spin IntakeMotorGroup * intake * fnro tums * .

IntakeBumper * pressed? — then

stop IntakeMotorGroup *

else

drive forward * for@ mm * ’

spin IntakeMotorGroup * intake * fmo turns = ’

change Emors * by o

Path #5
(BlockObtained05)

The fifth path in my route. Inside are
the motion/drivetrain blocks for the
path and my “Security System”,

which | have explained in the picture

define p, - kObtained06

Main autonomous driving code.

turn left *+ for m degrees .
drive forward * fur'm mm * .

spin IntakeMotorGroup * oullake * ﬁ]lo turns * .

turn right * for @ degrees '
drive forward * fur@ mm * .
turn might * for @ degrees '

drive forward = fur@ mm * .

My “Security System™ which first checks if the

re is a block in front of the robot. If there is indeed a block,

It will intake then after a few milliseconds, and It will check if

the Intake Bumper detects the block inside of the robot's intake.

If it isn't there, i will go forward by a tiny bit, then it will spin the intake,
and it will assume the block is in. Since it was expected that

the Intake Bumper was pressed, but it wasn't, so what happens is that

Errors increases by 1 which tells me how much miscalculations | had in the run.

FrontDistance * found an object? ‘

spin IntakeMotorGroup * intake * fnro turms * .

IntakeBumper * pressed?
stop IntakeMotorGroup =

drive forward * for e mm ¥ '

spin IntakeMotorGroup * intake * fnro turms * .

Path #6
(BlockObtained06)

The sixth path in my route. Inside are
the motion/drivetrain blocks for the
path and my “Security System”,
which | have explained in the picture

Main autonomous driving code.
turmn left for@degreﬁ’ | a l ;

drive forward * fﬂI@ mm * .

- (BlockObtained07)

turn rnight * for @' degrees ’

drive forward = fﬂl@ mm * .

- The seventh path in my route. Inside
= N =S are the motion/drivetrain blocks for

turn right * for @ degrees .'

0 the path and my “Security System”,
T which | have explained in the picture

It will intake then after a few milliseconds, and It will check if

the Intake Bumper detects the block inside of the robot's intake.

If it isn't there, It will go forward by a tiny bit, then it will spin the intake,
and it will assume the block is in. Since it was expected that

the Intake Bumper was pressed, but it wasn't, so what happens is that

Errors increases by 1 which tells me how much miscalculations | had in the run.

(N

FrontDistance * found an object? ‘

spin IntakeMotorGroup * intake ¥ fmo turns * .

g —

|

drive forward * fore mm * '

spin IntakeMotorGroup * intake * for o turns * .

Main autonomouws driving code.

Path #8
(BlockObtained08)

The last path in my route. Inside are
the motion/drivetrain blocks for the
path and my “Security System” is not

needed, as | am not picking up any
blocks.

Thanks for reading!

This took me a bunch of time and it spent a lot of my homework time.
Thank you so much for reading and | hope you understand well my

code, intentions, and improvements. For your information, this code is
heavily relied on My Blocks, The Monitor, and Sensors/Variables.

	Slide 1: Title : 8391W’s Entry
	Slide 2: What Can My Code Do?/ What Does It Include?
	Slide 3: How Did VEX VR Help Improve My Skills?
	Slide 4: Full View Of Code
	Slide 5
	Slide 6: RAISE ARM (Scoring Code)
	Slide 7: OUTPUT
	Slide 8: The Monitor
	Slide 9: Path #1 (BlockObtained01)
	Slide 10: Path #2 (BlockObtained02)
	Slide 11: Path #3 (BlockObtained03)
	Slide 12: Path #4 (BlockObtained04)
	Slide 13: Path #5 (BlockObtained05)
	Slide 14: Path #6 (BlockObtained06)
	Slide 15: Path #7 (BlockObtained07)
	Slide 16: Path #8 (BlockObtained08)
	Slide 17: Thanks for reading!

