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What Can My Code Do?/ What Does It Include?

* Inmy code, It contains 2 different sensor detection: Front
Distance sensor and Intake Bumper sensor. But, In total | use

vExra

VEX ROBOTICS a total of 6 sensors, when you include the sensors | use in
ROBOTICS COMPETITION . the monitor. So, technically I am using 6 sensors.
Virtual Skl"S MatCh RGSU'tS * My code is completely controlled by “My Blocks”. |
have a “Main Path”, where | connect all “My Blocks”
8391W then | put my codes into My Blocks. How my path
works is that the codes run in each “My Block” and
// Caution Tape Wonder // whenever one’s action is done, the next “My Block”

does what it is supposed to do. The whole purpose of
“My Blocks” are supposed to separate the path into
smaller sections to be more easily edited.

Score: 82 points

Skills Stop Time: 0 seconds remaining

* Inside of my code, | have a “Security System”, where |
check if  have a block when I’'m supposed to, and If |
do not have it, | will go forward by a little bit and
intake again. This makes sure that | won’t miss a block
and | also increase my variable called “Error” by 1.




How Did VEX VR Help Improve My Skills?

Did you know, In fact | started VEX 3 months ago? Yes, not start competing,
but introduced to VEX 3 months ago. | started VEX in my school’s VEX club. |
first started to build the hero bot for this year (Byte) and | got to learn some
decent coding in VEXCODE 1Q. Then, | was introduced to VEX VR. | had a lot
of experience in other coding languages (Lua, Python, Java, and Scratch) so |
was really interested in VEX VR. | started practicing it day by day and
eventually once | understood the logic, variables, and the unique “My
Blocks” of VEXVR, | soon became the best coder in my club. After a month,
my friend invited me to a team he just created in Caution Tape. When | first
went, it was just us two on the Caution Tape team. He knew | was good at
coding, so he decided to add me on the team. A few days after he joined, he
contributed greatly in assisting with the teachers to teach me advanced turns
and driving straight with Brain Inertial/Gyro. | learned a lot in VEX VR and |
put all my knowledge into VEX 1Q. Now, | have the knowledge to code
complicated equations and logic systems in VEX I1Q thanks to the online
practice | had in VR when | did not have a physical robot yet. VR is great for
newbies, as there are many features that IQ does not have and many
features that IQ has and VR does not have. Thanks to the coding practice VR
gave me, | was successful in getting higher scores autonomous in qualifiers.
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* Zoom in for a closer look*

apin IntakeMaiorGroup




-—-o] The Route

| had all my motor groups set to a velocity of 100% to make sure

that | had maximum strength and speed. This made sure that the
robot had the efficiency to finish it's tasks before the time runs wp.

These blocks are the very center
e of all my code. Without them,

This piece of code makes sure that my variable "Errors” is set to 0 at the start.

I e my code would not work at all.

has a value of. But, as you will see later in my code, | only have one variable called

“Error” and it would be increased by 1 whenever a block that is supposed to be

This code combines the smaller

Then, it will increase "Errors” by 1, and at the end if my run, | can use the Monitor to

see how much cubes | had missed trying to take. This is useful when I'm too tired to

paths (BlockObtained )
together and it also sets my

| separated my entire route into smaller paths called “BlockObtained#" using My Blocks.

| use their "Define” block to separate the paths, so | can see which "BlockObtained#” was

s variable to 0 and sets my
velocities to 100%. On the top, |
set “Outnum” to 1 and
“ArmNum” to 450.




define

RAISE ARM

This is a My Block called "RAISE ARM" which is for my scoring. |
nside the code it also includes another My Block called "OUTPUT".

Instead of adding this code into every "Define” Block for "BlockObtained#",

| can just use "RAISE AEM" so It will do the entire scoring procedure.

This code raises the digital "Byte” arm for 450 degrees then it uses the OUTPUT
code which dispenses out the cube, then the "Byte™ arm goes back down again.

Mow | can easy know where | put my dumping code and | can come to this “Define”™

My Block code to configure anything | need.

spiné. ArmMotorGroup * wup * for AmBNum  degrees ¥ "

spin  ArmMotorGroup * down * for ArmMNum degrees * 4 and don't wait

RAISE ARM
(Scoring Code)

This code is a My Block
scripted for the online
Byte to raise his arm,
spin his outtake, then
drop his arm.



OUTPUT

Pretty self explanatory.
Spins the outtake of the

[ _ _ o \ online Byte for 1 turn.
Since OUTNUM is set to 1, it spins for 1 turn

spin  IntakeMotorGroup * outiake * for OutNum tums * 4 and don't wait




Monitor

X IntakeMotorGroup is spinning?

false

X IntakeMotorGroup velocity in %

X IntakeBumper pressed?

false

FrontDistance found an
object?

false

X FrontDistance in mm

X FrontOptical found an object?

false

X Errors

The Monitor

Inside the monitor, | get to see values and
true/false of Sensors and Variables. At the
end of every run, | check my custom
variable “Errors”. What it does is that |
have a security system that checks if | had
any miscalculations about the positions of
the cubes on the map. | can see the
number of cubes that | would’ve missed if
| did not have a “Security System” so |
often fix my code thanks to the Monitor
and it’s amazing functions. | use a total of
one variable from my “Security System”,
which | will show later, and | also use 6
different sensors in my Monitor.



define g, KObtained01

Main autonomous driving code.

turn right * for @ degrees ’

drive forward fnr@ mm~* P

My "Security System” which first checks if the

re is a block in front of the robot. If there is indeed a block,

It will intake then after a few milliseconds, and It will check if

the Intake Bumper detects the block inside of the robot's intake.

If it isn't there, It will go forward by a tiny bit. then it will spin the intake,
and it will assume the block is in. Since it was expected that

the Intake Bumper was pressed, but it wasn't, so what happens is that

Errors increases by 1 which tells me how much miscalculations | had in the run.

if FrontDistance * found an object? _ then
stop driving

spin IntakeMotorGroup * intake * for o turns * .

if IntakeBumper ¥ pressed? = then

stop IntakeMotorGroup

drive forward * for@ mm ¥ ’

spin IntakeMotorGroup *  intake * for o turns * .

Path #1
(BlockObtained01)

The first path in my route. Inside
are the motion/drivetrain blocks
for the path and my “security
system”. | explained my
“Security System” in the picture.




My "Security System™ which first checks if the

re is a block in front of the robot. If there is indeed a block,

It will intake then after a few milliseconds, and It will checl if

the Intake Bumper detects the block inside of the robot’s intake.

If it isn't there, It will go forward by a tiny bit, then it will spin the intake,
and it will assume the block is in. Since it was expected that

the Intake Bumper was pressed, but it wasn't, so what happens is that

Errors increas es by 1 which tells me how much miscalculations | had in the run

FrontDistance * found an object? ‘
n

spin IntakeMotorGroup *  intake * fnro tums * .

e

|

stop IntakeMotorGroup *
e T r

Path #2
(BlockObtained02)

The second path in my route. Inside
are the motion/drivetrain blocks for
the path and my “Security System”,
which | have explained in the picture



define ) LObtained02

Main autonomous driving code.

turn  left * for @ degrees .

spin  IntakeMotorGroup * outiake ¥ for o turns * ’
drive reverse * for @ mm * ’

turm right * for B degrees .

drive forward * for @ mm ¥ ’

My ~Security System”™ which first checks if the

re is a block in front of the robot. If there is indeed a block,

It will intake then after a few milliseconds, and It will check if

the Intake Bumper detects the block inside of the robot's intake.

If it ism't there, It will go forward by a tiny bit, then it will spin the intake,
and it will assume the block is in. Since it was expected that

the Intake Bumper was pressed, but it wasn't, so what happens is that

Errors increases by 1 which tells me how much miscalculations | had in the run.

if FrontDistance * found an object? = then

spin ArmMotorGroup * up * for @ degrees ‘am‘l don't wait
spin  IntakeMotorGroup *  intake * for o tumns * .

spin  ArmMotorGroup * down * for @ degrees * 4 and don't wait

stop IntakeMotorGroup *

else
drive forward * fur@ mm * '

spin  IntakeMotorGroup *  intake = foro turns = ’

change Emmors * by o

Path
BlockObtained03

The third path in my route. Inside are
the motion/drivetrain blocks for the
path and my “Security System”,
which | have explained in the picture



define  piockObtained 04

Main autonomous driving code.

drive reverse v fur@ mm * .
turn  left * for m degrees ’
drive forward = fur@ mm * .

spin  IntakeMotorGroup * outlake * for o turns * ’
drive reverse * for m‘ mm * .

turn right * for @ degrees .

drive forward * for @ mm * ’

My "Security System™ which first checks if the

re is a black in front of the robot. If there is indeed a block,

It will intake then after a few milliseconds, and I will check if

the Intake Bumper detects the block inside of the robot’s intake.

If it ism't there, It will go forward by a tiny bit. then it will spin the intake,
and it will assume the block is in. Since it was expected that

the Intake Bumper was pressed, but it wasn™t, so what happens is that

Errors increases by 1 which tells me how much miscalculations | had in the rum.

FrontDistance * found an object? ‘

stop driving

spin  IntakeMotorGroup *  intake * fnro tums * .

Path #4
(BlockObtained04)

The fourth path in my route. Inside
are the motion/drivetrain blocks for
the path and my “Security System”,
which | have explained in the picture




define g, ¥Obtainedos

Main autonomous driving code.
turn left * for @ degrees ’

drive forward = fnr@ mm * .

spin  IntakeMotorGroup *  ouwtlake * for o tums * ’

drive reverse ¥ fnr@ mm * ’
spin  ArmMotorGroup * wp * for @ degrees ¥ ’
turn right = for @ degrees ’

drive forward * fnr@ mm * .

My "Security System” which first checks if the

re is a block in front of the robot. If there is indeed a block,

It will intake then after a few milliseconds, and It will check if

the Intake Bumper detects the block inside of the robot’s intake.

If it isn't there, It will go forward by a tiny bit, then it will spin the intake,
and it will assume the block is in. Since it was expected that

the Intake Bumper was pressed, but it wasn't, 5o what happens is that

Errors increases by 1 which tells me how much miscalculations | had in the run.

if FrontDistance * found an object? = then

spin  IntakeMotorGroup *  intake * fnro tums * .

IntakeBumper * pressed? — then

stop IntakeMotorGroup *

else

drive forward * for@ mm * ’

spin IntakeMotorGroup *  intake * fmo turns = ’

change Emors * by o

Path #5
(BlockObtained05)

The fifth path in my route. Inside are
the motion/drivetrain blocks for the
path and my “Security System”,

which | have explained in the picture



define  p, - kObtained06

Main autonomous driving code.

turn left *+ for m degrees .
drive forward * fur'm mm * .

spin  IntakeMotorGroup * oullake * ﬁ]lo turns * .

turn right * for @ degrees '
drive forward * fur@ mm * .
turn might * for @ degrees '

drive forward = fur@ mm * .

My “Security System™ which first checks if the

re is a block in front of the robot. If there is indeed a block,

It will intake then after a few milliseconds, and It will check if

the Intake Bumper detects the block inside of the robot's intake.

If it isn't there, i will go forward by a tiny bit, then it will spin the intake,
and it will assume the block is in. Since it was expected that

the Intake Bumper was pressed, but it wasn't, so what happens is that

Errors increases by 1 which tells me how much miscalculations | had in the run.

FrontDistance * found an object? ‘

spin  IntakeMotorGroup *  intake * fnro turms * .

IntakeBumper * pressed?
stop IntakeMotorGroup =

drive forward * for e mm ¥ '

spin  IntakeMotorGroup *  intake * fnro turms * .

Path #6
(BlockObtained06)

The sixth path in my route. Inside are
the motion/drivetrain blocks for the
path and my “Security System”,
which | have explained in the picture




Main autonomous driving code.
turmn  left for@degreﬁ’ | a l ;

drive forward * fﬂI@ mm * .

- (BlockObtained07)

turn rnight * for @' degrees ’

drive forward = fﬂl@ mm * .

- The seventh path in my route. Inside
= N =S are the motion/drivetrain blocks for

turn right * for @ degrees .'

0 the path and my “Security System”,
T which | have explained in the picture

It will intake then after a few milliseconds, and It will check if

the Intake Bumper detects the block inside of the robot's intake.

If it isn't there, It will go forward by a tiny bit, then it will spin the intake,
and it will assume the block is in. Since it was expected that

the Intake Bumper was pressed, but it wasn't, so what happens is that

Errors increases by 1 which tells me how much miscalculations | had in the run.

(N

FrontDistance * found an object? ‘

spin  IntakeMotorGroup *  intake ¥ fmo turns * .

g —

|

drive forward * fore mm * '

spin  IntakeMotorGroup *  intake * for o turns * .




Main autonomouws driving code.

Path #8
(BlockObtained08)

The last path in my route. Inside are
the motion/drivetrain blocks for the
path and my “Security System” is not

needed, as | am not picking up any
blocks.




Thanks for reading!

This took me a bunch of time and it spent a lot of my homework time.
Thank you so much for reading and | hope you understand well my

code, intentions, and improvements. For your information, this code is
heavily relied on My Blocks, The Monitor, and Sensors/Variables.
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