Titantron - 38535A - 2024
VEX VR Online Challenge

Caspar Chen, Matthew Yam

Team # 38535A

Glenview, lllinois

#region VEXcode Generated Robot Configuration
import math

import random

from vexcode vrc import *

from vexcode vrc.events import get Task func

Brain should be defined by default

brain=Brain ()

drivetrain = Drivetrain ("drivetrain", 0)
arm motor = Motor ("ArmMotor", 3)
rotation = Rotation ("Rotation", 7)
intake motor = Motor ("IntakeMotor", 8)
optical = Optical ("Optical"™, 11)

gps = GPS("GPS", 20)

#fendregion VEXcode Generated Robot Configuration

#

#

Starting Location: B

Starting Direction: West
Robot Preload: Yes
Preload Location: 6

#

#

armFetch = 1300

armLaunch = 175

def setup():
drivetrain.set heading(-90,DEGREES) #targetAngle() won't work
without this
drivetrain.set drive velocity (100, PERCENT) #Set all motors
to 100 percent
drivetrain.set turn velocity (100, PERCENT)
arm motor.set velocity (100, PERCENT)
intake motor.set velocity (100, PERCENT)
arm motor.spin to position(armFetch, DEGREES, wait=False)
#Arm motor to position for intaking balls
def hitAndRun () : #BRacks up into the ball for 2 points
startPos = (-897,1435)
drivetrain.drive for (REVERSE,200,MM)
goToTarget (startPos)
def preloads():
goalAngle = -90
goalPos = (-897,0)
goToTarget (goalPos) #Scores robot preload
drivetrain.turn to heading(goalAngle, DEGREES)
release ()
fetch (clockwise=False) #Grabs second preload and scores
drivetrain.turn to heading(goalAngle, DEGREES)
release ()
def doubleScore(): #Intakes 2 green balls, goes to goal on other
side, scores
intake motor.spin (FORWARD)
drivetrain.set drive velocity (80, PERCENT)
goToTarget ((1000, 0))
drivetrain.set drive velocity (100, PERCENT)
release ()
def barballs () :
ballCoords = [(-100,-1100), (-125,600), (-125,1075)]

goal = (1000,0)
for x in ballCoords: #Goes to every coordinate and scores
goToTarget (x,getBall=True)
goToTarget (goal)
release ()
lastOne = (-100,-600) #Launches last ball along bar while
going to bottom left corner
launchPoint = (-200,-200)
goToTarget (lastOne,getBall=True)
launchSet ()
goToTarget (launchPoint)
drivetrain.drive for (REVERSE,100,MM)
launch ()
def finalBall(): #Bottom right corner; last ball scored in
program
arm motor.spin to position(1300,DEGREES,wait=False)
goToTarget ((1600,-1600) ,getBall=True)
goToTarget ((1500,-800))
release ()

drivetrain.drive for (REVERSE,200,MM)

def targetAngle (coords):

targetX = coords[0]

targetY = coords[1]

xDiff = targetX-gps.x position (MM)

yDiff = target¥-gps.y position (MM)

if xDiff != 0: #Avoid division by zero

angle = abs (math.degrees (math.atan(yDiff/xDiff)))

#Absolute value of the reverse tangent of coordinates, converted

from radians to degrees

if yDiff>=0 and xDiff>0: #The heading depends on where
the ball is relative to the robot
turnAngle = 90-angle
elif yDiff>=0 and xDiff<0:
turnAngle = -90+angle
elif yDiff<=0 and xDiff<0:
turnAngle = -90-angle
elif yDiff<=0 and xDiff>0:
turnAngle = 90+angle
return turnAngle
elif yDiff>0: #If ball is directly above or directly below
the robot
return 0
elif yDiff<O0:
return 180
else:
return gps.heading()
def targetDistance (coords): #Distance formula to find how far
robot needs to go
targetX = coords[0]
targetY = coords[1]

distance =
math.sqgrt (pow (targetX-gps.x position (MV),2)+pow (targetY-gps.y po
sition (MM),2))

return distance
def goToTarget (coords, getBall=False):

drivetrain.turn to heading(targetAngle (coords), DEGREES) #Use
target angle to turn to ball

if getBall: #Accounts for arm length to grab ball

armsReach = 300

intake motor.spin (FORWARD)

distance = targetDistance (coords)-armsReach #Target
distance drives to ball
drivetrain.drive for (FORWARD,distance, MM)
else:
distance = targetDistance (coords)
drivetrain.drive for (FORWARD,distance, MM)
def reverseTarget (coords,getBall=False): #Reverse version of
goToTarget ()
drivetrain.turn to heading(targetAngle (coords)+180, DEGREES)
#Turns another 180 degrees
if getBall:
armsReach = 300
intake motor.spin (FORWARD)
distance = targetDistance (coords)-armsReach

else:

distance targetDistance (coords)

drivetrain.drive for (REVERSE,distance, MM)

def fetch(clockwise): #Spins around to find ball
intake motor.spin (FORWARD)
degreesTurned = 0 #Stops spinning if robot has turn 360
degrees
if clockwise: #Parameter to spin clockwise or
counterclockwise
while (not optical.is near object()) and (not
degreesTurned>=360) : #Stops spinning when object detected with
optical sensor
drivetrain.turn for (RIGHT,1l,DEGREES,wait=False)
degreesTurned+=1
else:
while (not optical.is near object()) and (not

degreesTurned>=360) :

drivetrain.turn for (LEFT,1,DEGREES,wait=False)

degreesTurned+=1

def release(): #Function for shooting the ball
intake motor.spin (REVERSE)
wait (0.8, SECONDS)

def launching():
global launchAngle
launchAngle = -81
hit = False #Bumps ball on the bottom first for 2 points
for x in range(5): #Launches 5 balls
reloadBalls ()
if hit == False:
reverseTarget ((0,-1500))
drivetrain.drive for (FORWARD,400,MM)
hit = True
launchSet ()
launch ()
def reloadBalls(): #Goes to bottom left corner and gets a ball
intake motor.spin (FORWARD)
arm motor.spin to position(armFetch, DEGREES,wait=False)
cornerCoords = (-1600,-1600)
goToTarget (cornerCoords,getBall=True)
wait (0.2, SECONDS)
def launchSet(): #Positions arm motor for launching and drives
backwards towards launch position
arm motor.spin to position (armLaunch, DEGREES,wait=False)
launchPos = (-100,-200)
reverseTarget (launchPos)
launchAngle = -90
def launch(): #Releases ball

global launchAngle

drivetrain.turn to heading(launchAngle, DEGREES)

launchAngle-=8 #Decrements shooting angle to prevents balls
blocking each other

intake motor.spin (REVERSE)

wait (0.8, SECONDS)

def main(): #Functions divide entire program into parts
setup ()
hitAndRun ()
preloads ()
doubleScore ()
barballs ()
launching ()

finalBall ()

stop project ()

vr thread(main)

