
VEX VRC - 2023/2024 Reverse Engineering Online Challenge Summary Report

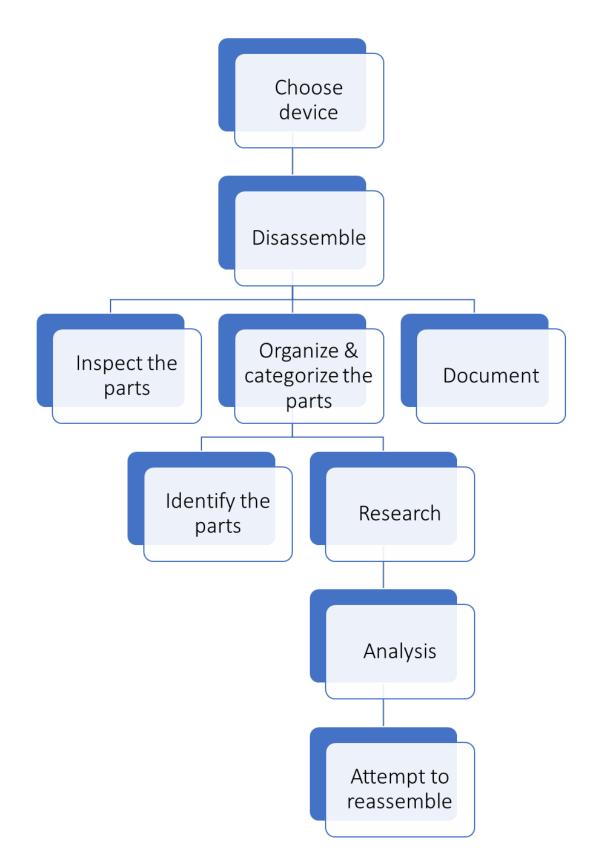
Nighthawks Robotics Club Team 569A Murrieta Valley High School Murrieta, California USA

Documented By: Joni & Ai-Vy Challenge Completed By: Ai-Vy, Leo, Joni, Nigel

Word Count: 495 (not including title page, titles, or captions)

Table of Contents

1.	Introduction	3
2.	The Game Plan	4
3.	Disassembly	5
4.	Parts/Components: Non-Electronic	6
5.	Parts/Components: Electronic	9
6.	Component Analysis	13
7.	Findings	14
8.	Resources	14


Introduction

Team 569A is made up of nine members. We chose a racing simulator wheel as our device for this challenge. We have some members on our team that enjoy car racing, so we decided to find out how the wheel works. We thought that it would be cool to see how the buttons and movements of the wheel translate to what you see on the screen.

Fig. 1: Logitech G Driving Force G920 Feat. Nigel's leg

The Game Plan

Disassembly

The disassembly process consisted of a lot of unscrewing and picture-taking.

Tools used:

- Safety glasses
- Allen wrench (hex)
- Philip screwdriver (different sizes)
- Ratchet
 - Flat head drill bit
 - Philip head drill bit (2 different sizes)

Fig. 2: Wheel Front View

Fig. 3: Wheel Bottom View

Fig. 4: Wheel Top View

Fig. 5: Wheel Itself Detached from Body

Fig. 6: Wheel Base with Top Off

Parts/Components: Non-Electronic

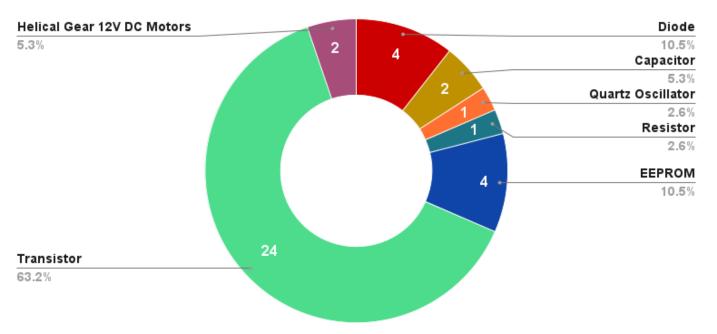
Part Name	Description	Photo
Steering Wheel	The steering component of the Logitech racing wheel	
Mounting Clamps	Clamps used to mount the racing wheel onto something (ex: a table)	
Clamp Extenders	Extends the Clamps for thinner surfaces	

Clamp Knobs	Used to adjust the Mounting Clamps	
Shaft	Rotation point	
Hood	Front cover; protects the electronics	logitech (1
Shaft Coupler	Connection point between Shaft and Wheel	

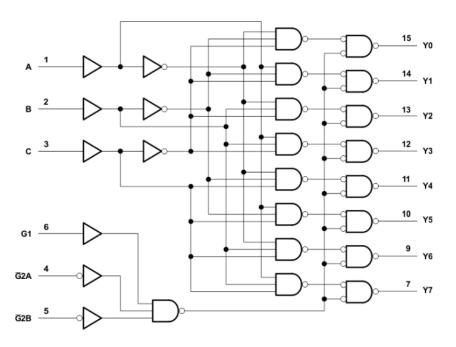
"Radiator"	The Hood is meant to look like the actual Hood of a car, and this is the part that looks like the radiator of the car.	
Button Frame	Holds the LSB, RSB, Home, and Share buttons. Connects to the wheel.	
"Cable Management"	It is essentially cable management, but for inside the wheel.	
Paddle Shifters	If you are driving a manual car in the simulator, it will make the car go faster.	
Wires	The wiring of the main board.	

Parts/Components: Electronic

Component Name/Description	Photo	Location
Diodes They protect the electronic components from burning Datasheet		
Capacitor Act as extra batteries to charge the circuit board		
Quartz Oscillator It acts as the "crossing guard" inside of the microchip		
Resistor Lessens the strength of the currents so that they do not ruin the inside components	TP60 A 020 P P P P P P P P P P P P P P P P P P	


EEPROM (Electrically Erasable Programmable Read Only Memory) Act as a form of accessible storage that keeps user data Datasheet	A COBUP A COBUP A TRACE A	
Transistor a system of gates that lets certain currents through		
Microcontroller Used to control sensors and output different forms of data		

Component Analysis


We put together a table showing all of the electric components we found and researched.

Electronic Component	Quantity
Diode	4
Capacitor	2
Quartz Oscillator	1
Resistor	1
EEPROM	4
Transistor	24
Helical Gear 12V DC Motors	2

Microchip Makeup

Findings

We found that the transistor for this mechanism has four different gates: the Inverter (NOT), Alternate OR, NAND, and Buffer. There is a "fifth" gate, the DeMorgan Inverter, which is no different to Inverter gates.

Output

0

1

1

1

А

0

1

0

1

В

0

0

1

1

Gate Truth Table

Fig. 8: Alternate OR

Input	Output
0	1
1	0

Fig. 7: Inverter Gate Truth Table

Input	Output
0	0
1	1

Fig.10 Buffer Truth Table

We also found out that the resistor used in this device is served to limit any variance in the voltage to keep the EEPROM, and other logic gates safe.

Α	В	Output
0	0	1
1	0	1
0	1	1
1	1	0

Fig. 9: NAND Gate Truth Table

Conclusion

We learned how to read resistor stripes, about different transistor gates, and how capacitors store energy. We realized that having an order of operations was extremely important. It was very helpful having someone on the team that already has prior knowledge about circuit boards and its components.

<u>Resources</u>

Other sources like datasheets are linked in the description of each component. Below are the sources in which we gathered information from.

- 1. *How to read capacitor code BuildCircuit.COM*. Buildcircuit.com. <u>https://www.buildcircuit.com/capacitors/</u>.
- Helical Gears an overview | ScienceDirect Topics. www.sciencedirect.com. <u>https://www.sciencedirect.com/topics/engineering/helical-gears#:~:text=Helical%</u> <u>20gears%20are%20used%20increasingly</u> (accessed 2023-12-03).
- 3. Chonowski, K. *Cracking the Resistor Color Code*. Arrow.com. <u>https://www.arrow.com/en/research-and-events/articles/resistor-color-code</u>.
- What is a gate-all-around transistor? www.asml.com. https://www.asml.com/en/news/stories/2022/what-is-a-gate-all-around-transistor# :~:text=Transistors%20make%20up%20the%20basic (accessed 2023-12-03).
- 5. *How does a Crystal work?* Electrical Engineering Stack Exchange. <u>https://electronics.stackexchange.com/questions/117624/how-does-a-crystal-work</u> (accessed 2023-12-03).
- Khutoryansky, E. Capacitors and Capacitance: Capacitor Physics and Circuit Operation. YouTube, 2016. <u>https://www.youtube.com/watch?v=f_MZNsEqyQw</u>.