
14683B Virtual Skills

Code
Members: Sean, Matthew, Allen, Cal, Hiro

Team Number: 14683B

Location: Taipei, Taiwan

12

INDEX:
Two scoring method ... p.2

Brief intro of functions ... p.2~3

How we use sensors ... p.3~4

How we represent variables ... p.4

Our code ... p.5~12

12

● Two scoring methods

Low-score: drop the intake and score near the goal, more

efficient when the robot is in red offensive zone

High_score: rise the intake and outtake from far away. The

ball will roll into the goal due to inertia

● Brief intro of functions:

Function Name What it does

calDeg Calculate the angle the robot
should face so it can reach the
goal using arctan

calDist Calculate the distance between
the robot and the goal using
Pythagorean theory

cal_goal_for_angle Calculate the where the robot
should stop to allow the intake
located on certain location at
certain angle using sine and
cosine

need_heading_corr Check if the robot needs to
adjust its heading to keep facing
the goal using GPS sensor

12

hasball Use optical sensor to check if
the ball is still inside the
intake

move Make the robot face the goal,
move the robot toward the goal,
and return the distance between
the robot and the goal after
moving

goto Make the robot moves to a
location

goto_and_catch Make the robot moves to a triball
and grab it

cal_scoring_pt Calculate a scoring point closest
to the robot within a range

best_scoring_loc Use greedy algorithm to get the
closest scoring point among every
available scoring ranges

goto_and_low_score Move to the best scoring point
and outtake the triball

low_score Combine best_scoring_lco and
goto_and_low_score

high_score Goto scoring spot and shoot the
ball

● How we use the sensors:

Optical sensor: Since the Optical sensor is set right

behind the intake, we use it to check if the ball is still

inside the intake. It allow us to determined whether the

ball has been successfully shot or caught. The use of

optical sensor can make both catching and scoring process

faster and more stable, enabling the robot process to the

next action once the ball has left or get into the intake

properly.

GPS sensor: The use of gps sensor allow us to monitor both

position and heading of the robot, facilitating the

calculate the distance between the robot and the target, as

12

well as the angle the robot should face. The process ensure

the accuracy of the robot’s movement moves accurately.

Further more, using gps sensor also makes the code nice and

clean. Instead of directly telling the robot to face which

direction and go how much distance, we simply provide the

robot the locations of each triballs and range of the goal,

then the robot can use the data gps sensor provided to

calculate the best route and move.

Motor sensing: We used motor sensing when catching the

ball. In our code, the robot’s arm changes angle when using

high-score method. To make sure the robot’s arm has been

set back to the original position, the code first tell the

robot to spin back to the catching position without waiting

the process has done(saves time), then check if the arm is

still moving after reaching the triballs’ locations.

● How we represent variables:

Triballs’ locatoins (Triballs on the field and preloads):

[X, Y, Angle to catch]

Low Scoring ranges (For both preloads and green triballs):

[[x_range, x_range], where to stop(mm from goal), where to

shoot(mm from goal)]

High Scoring spot: [X, Y, Angle]

12

● Our code:
#region VEXcode Generated Robot Configuration

import math

import random

from vexcode_vrc import *

from vexcode_vrc.events import get_Task_func

Brain should be defined by default

brain=Brain()

drivetrain = Drivetrain("drivetrain", 0)

arm_motor = Motor("ArmMotor", 3)

rotation = Rotation("Rotation", 7)

intake_motor = Motor("IntakeMotor", 8)

optical = Optical("Optical", 11)

gps = GPS("GPS", 20)

#endregion VEXcode Generated Robot Configuration

--

#

Project: VEXcode Project

Author: VEX

Created:

Description: VEXcode VR Python Project

#

--

Add project code in "main"

#set velocity for each motors

drivetrain.set_drive_velocity(100, PERCENT)

drivetrain.set_turn_velocity(100, PERCENT)

arm_motor.set_velocity(100, PERCENT)

intake_motor.set_velocity(100, PERCENT);

#allow error when turning or traveling(impossible to be on exact number)

degError = 1.8

distError = 35

#distance between gps and intake in mm

intake_length = 295

#index of each data(gives index a meaning)

12

locX = 0

locY = 1

locAng = 2

stop_point = 2

shoot_point = 3

#field preload location

preload_loc = [[-900, 300, None]]

#locations of every green triballs on the court and the angle the robot should

face to grab the ball ([x, y, angle])

triballs_loc = [[-120, 0, None], [-100, -600, 270], [-100, -1050, 225], [1600,

-1600, 135], [0, -1500, 245], [-125, 600, 270], [-125, 1050, 315], [0, 1500,

90], [1600, 1600, 45]]

#match load location ([x, y, angle])

loadzone = [-1600, 1600, 315]

#low_scoring_loc for preload triballs

preload_scoring_loc = [[[-1200, -1200], [400, -400], 300, 300]]

#available scoring ranges when arm is out, where should robot stop(mm from

goal), and when should it release the ball(mm from goal)([[x_range, x_range],

where to stop, where to shoot])

low_scoring_loc = [[[1200, 1200], [400, -400], 600, 1150], [[1300, 1600],

[-600, -600], 250, 600], [[1300, 1600], [600, 600], 250, 600]]

#location and ang that allows the robot to throw the ball into the goal on blue

offensive zone ([x, y, angle])

high_scoring_loc = [-30, 450, 270]

#position of the arm when doing different things

arm_catch = 1260

arm_high_score = 110

def calDeg(x_curr, y_curr, x_goal, y_goal):

#using trigonometry to calculate the angle the robot should face

return math.degrees(math.atan2(x_goal - x_curr, y_goal - y_curr))

def calDist(x_curr, y_curr, x_goal, y_goal):

#using pythagorean theory to calculate the distance between two points

return ((x_goal - x_curr)**2 + (y_goal - y_curr)**2) ** 0.5

12

def cal_goal_for_ang(x_goal, y_goal, direction, ang):

#calculate where the robot should stop so the intake will locate on the goal

when facing certain angle

#if the robot is traveling in opposite direction, then the final angle will

also be opposite

if (direction == REVERSE):

ang -= 180

if (ang < 0):

ang += 360

#calculate new goal

new_x_goal = x_goal

new_y_goal = y_goal

if (ang != None):

new_x_goal -= intake_length * math.cos(math.radians((450 - ang) % 360))

new_y_goal -= intake_length * math.sin(math.radians((450 - ang) % 360))

return new_x_goal, new_y_goal

def need_heading_corr(deg):

#check if the robot is need to adjust its heading

currHeading = gps.heading()

bound_low = deg - degError

bound_high = deg + degError

#check if the current heading is out of acceptable range

if (bound_low < 0 or bound_high > 360):

if (bound_low < 0):

bound_low += 360

else:

bound_high -= 360

if (currHeading > bound_low or currHeading < bound_high):

return False

return True

else:

if (currHeading > bound_low and currHeading < bound_high):

return False

return True

12

def hasball():

#using optical sensor on the intake to check if the ball is still inside the

intake

if ((optical.hue() == 120 or optical.hue() == 0) and

optical.is_near_object()):

return True

return False

def move(x_goal, y_goal, direction = FORWARD):

#move the robot toward the goal and return distance between the robot and

the goal

x_curr = gps.x_position(MM)

y_curr = gps.y_position(MM)

#calculate the angle the robot should face

deg = calDeg(x_curr, y_curr, x_goal, y_goal)

if (direction == REVERSE):

deg -= 180

if (deg < 0):

deg += 360

#adjust the heading the robot is facing if it is not facing the goal

if (need_heading_corr(deg)):

drivetrain.turn_to_heading(deg, DEGREES)

drivetrain.drive(direction)

#calculate the distance between the robot and the goal

dist = calDist(x_curr, y_curr, x_goal, y_goal)

return dist

def goto(x_goal, y_goal, direction = FORWARD):

#Let the robot move to a specified coordinates

dist_from_goal = move(x_goal, y_goal, direction)

12

while not (dist_from_goal < distError):

dist_from_goal = move(x_goal, y_goal, direction)

wait(5, MSEC)

def goto_and_catch(x_goal, y_goal, ang):

#Let the robot go to the location of the ball and grab the ball

#drop the intake to the catch position

arm_motor.spin_to_position(arm_catch, DEGREES, wait=False)

#calculate where should the robot reach so the intake can grab the ball at a

certain angle

new_x_goal, new_y_goal = cal_goal_for_ang(x_goal, y_goal, FORWARD, ang)

dist_from_goal = move(new_x_goal, new_y_goal)

intake_motor.spin(FORWARD)

while not (dist_from_goal < distError):

#move toward the ball

dist_from_goal = move(new_x_goal, new_y_goal)

wait(5, MSEC)

#face the catching angle

if (ang != None):

drivetrain.turn_to_heading(ang, DEGREES)

#wait till the arm motor is completely set and the ball is caught by the

intake

while(arm_motor.is_spinning() or (not hasball())):

wait(5, MSEC)

drivetrain.stop()

def cal_scoring_pt(x_curr, y_curr, x_range, y_range):

#calculate the scoring position that is the closest to the robot within a

range

if (x_range[0] == x_range[1]):

if (y_curr < y_range[0] and y_curr > y_range[1]):

return [x_range[0], y_curr]

else:

12

if (y_curr > y_range[0]):

return [x_range[0], y_range[0]]

return [x_range[0], y_range[1]]

else:

if (x_curr < x_range[0] and x_curr > x_range[1]):

return [x_curr, y_range[0]]

else:

if (y_curr > y_range[0]):

return [x_range[0], y_range[0]]

return [x_range[1], y_range[0]]

def best_scoring_loc(locations):

#choose the best scoring location amoung all available scoring ranges

x_curr = gps.x_position(MM)

y_curr = gps.y_position(MM)

mmin = sys.maxsize

index = -1

goal = []

for i in range(len(locations)):

#loop through all the location and find the closest one by comparesing

the distance bewtween robot and possible goal

locs = cal_scoring_pt(x_curr, y_curr, locations[i][0], locations[i][1])

dist = calDist(x_curr, y_curr, locs[locX], locs[locY])

#update the closest spot

if (dist < mmin):

mmin = dist

index = i

goal = locs

return goal, locations[index][shoot_point], locations[index][stop_point]

def goto_and_low_score(goal, shoot_pt, stop_pt):

#make the robot goto the closest available scoring position and shoot the

ball into the goal

dist_from_goal = move(goal[locX], goal[locY])

while not (dist_from_goal < distError + stop_pt):

12

#move to the shooting spot

dist_from_goal = move(goal[locX], goal[locY])

#start shooting before reaching the goal allows the triball get further

inside the goal and avoid blocking other triballs at the goal entance

if (dist_from_goal < distError + shoot_pt):

intake_motor.spin(REVERSE)

wait(5, MSEC)

drivetrain.stop()

#keep shooting until the ball get out of the intake

while(hasball()):

intake_motor.spin(REVERSE)

wait(5, MSEC)

intake_motor.stop()

def low_score(scoring_locs):

#calculate the closest scroing spot and score at the location

goal, shoot_pt, stop_pt = best_scoring_loc(scoring_locs)

goto_and_low_score(goal, shoot_pt, stop_pt)

def high_score():

#rise the arm to allow

arm_motor.spin_to_position(arm_high_score, DEGREES, wait=False)

#go to shooting spot

new_x_goal, new_y_goal = cal_goal_for_ang(high_scoring_loc[locX],

high_scoring_loc[locY], REVERSE, high_scoring_loc[locAng])

goto(new_x_goal, new_y_goal, direction = REVERSE)

#face the goal

drivetrain.turn_to_heading(high_scoring_loc[locAng], DEGREES)

drivetrain.stop()

#wait till the ball is shot

while(hasball()):

intake_motor.spin(REVERSE)

wait(5, MSEC)

12

#adjust the shooting angle and location so the ball can roll into the goal

easier

high_scoring_loc[locAng] += 3.5

high_scoring_loc[locY] -= 125

def main():

arm_motor.set_position(0, DEGREES)

arm_motor.spin_to_position(arm_catch, DEGREES, wait=False)

goto(-900, 0)

low_score(preload_scoring_loc)

for i in range(7):

goto_and_catch(triballs_loc[i][locX], triballs_loc[i][locY],

triballs_loc[i][locAng])

low_score(low_scoring_loc)

for i in range(5):

goto_and_catch(loadzone[locX], loadzone[locY], ang = loadzone[locAng])

high_score()

goto_and_catch(loadzone[locX], loadzone[locY], ang = loadzone[locAng])

#push the ball under the blue elevation bar to the offensive zone

goto(700, 1500)

low_score(low_scoring_loc)

for i in range(8, 9):

goto_and_catch(triballs_loc[i][locX], triballs_loc[i][locY], ang =

triballs_loc[i][locAng])

low_score(low_scoring_loc)

#let the robot turn away so it won't touches any ball in the end of the

match

goto(300, 1200)

VR threads TEST — Do not delete

vr_thread(main)

12

