

Santino

Participants

Facundo
High-quality programmer and

leader. With notable
achievements and experience

in VRC, our team engineer,
notebooker, programmer and

four-time VEX Worlds
competitor, steps up to this

challenge to redefine the
boundaries of programming.

Nothing is too much for these
two friends at the computer.

Two heads are better than
one. The driver, engineer,
programmer, and five-time
VEX Worlds competitor is
ready to compete in this
challenge. Alongside his
teammate, they aim to
once again solidify the title
of the world's strongest
team: Riders.

These are the conditions under which we
programmed and ran the simulator. Our score and
the proper functioning of the code were obtained
under these conditions, so it's possible that with

different parameters, the simulation may exhibit
variations in its performance.

How did we run
the program?

We used a powerfull dedicated GPU

(NVIDIA RTX 3060)

We disabled web browser VSYNC

We kept the FPS from 150 to 300

We kept the laptop in a good

temperature

Pre-Match
Checklist

START
LOCATION

DIRECTION PRE-LOAD FIELD
PRE-LOAD

E 6N

Full Code (1)

Full Code (2)

Full Code (3)

These blocks are used to set all speeds, variables,
and configurations before the robot and its

mechanisms are set in motion to avoid bugs. We
use the message block as a signal to trigger various
simultaneous processes, such as movement and the
automatic system. This does not cause a delay for

the robot to start moving.

Initial Setup

Milimiters? Inches? Nah.. We use a custom block
for the robot to handle distances in foams. In this
way, we have a more visual division of the field
that makes it easier for us to calculate distances

when programming. This block works by
numerical and boolean values, as well as having

all the capabilities of a normal driving block. It’s a
simple, effective, and functional way to make our

robot move.

Foams as
Measuring System

How the block
works?

A
A. Numeric variable used to indicate how many
foams the robot will traverse. (Supports decimal
quantities)

B. Boolean variable used to indicate whether the
robot should drive forward or in reverse. (If true,
forward. Else, reverse)

C. Boolean variable used to indicate whether the
block should finish its process before moving on to
the next one. (If true, wait for the next block)

In the example the robot will drive forward for 1
foam, and will wait.

B C

This automatic system is activated by the message
block “Start” and works forever using two

conditionals. It works this way: if the “Triball
Loaded” variable is false, the IntakeMotor will start

consuming. But if this variable is set to True, and
while the optical sensor is detecting a green or red

object (Triball), the IntakeMotor will start discarding,
droping or shooting triballs. Also this allow our

program to run correctly, because when we use the
intake block some bugs may occur making the robot

unable to shoot or drop a triball.

Automatic Intake
and Shooting system

We use 'if' blocks inside a 'forever' block to keep the
system active throughout the entire program. The
optical sensor is used to stop discarding when it no
longer detects triballs. Why? Because the shooting
process works more accurately if the IntakeMotor
stops once the optical sensor no longer detects the

triball. This is because, if it doesn't stop, it will
overpropel the shoot of the triball and may go

above the goal.

To save blocks in the code

To not waste time in robot movement

To make our program cleaner

To use just one block to shoot or drop.

To use in a creative way the VEXcode

tools we have

Why not? It’s so cool!

Why we should
use an automatic

Intake system?

We decided to use messages blocks instead of
custom blocks, so that the shoot occurs

simultaneously with the robot's movement,
avoiding the need for blocks to finish their

processes before moving on to the next, in order to
shoot while the robot is moving.

NoWaitShoot Message

When this message is received, the
“TriballLoaded” variable is set to true, causing the

robot to start discarding the triball. Then, the
“Shooting” message is broadcast.

When this message is received, it waits for the
necessary time for a triball to be shot with power

and sets the variable back to false. After, the
automatic Intake system is reactivated.

Shooting Message

Shooting System

How to shoot
a triball?

To make the robot shoot the
triball you need to use the
NoWaitShoot message, but
you can use more blocks to

shoot in diferent ways.

1st block

2nd block

3rd block
Raise your arm

(shoot even farther)

Start shooting

message

Start movement

(shoot farther)

Scoring 2 preloads (1st part)

The following section is the main part of the
program, where the robot executes movements to
score points. To keep the order, the code attached
in this document is divided into several parts in
an organized and sequential way. All the parts

togheter is our functional code.

The robot scored the pre-load triballs on the
blue goal. (The exception of the automatic

system before is just to drop the first pre-load
faster)

Scoring 3 triballs (2nd part)

The robot took 3 green triballs and shot
them on the goal.

Scoring 3 triballs (3rd part)

The robot took the 3 triballs left on the
barrier and headed to the other side of the

field scoring them.

Scoring 2 triballs (4th part)

The robot took and scored the triballs on the
blue load zone and under the blue bar.

Taking 1 triball before
repeat (5th part)

The robot headed to the LoadZone1 and is
getting ready to the Repeat section. Here

on the repeat section the arm raises to
shoot farther.

Repeat and score 5 triballs
(6th part)

dchddad

Our code makes the robot shoot triballs at
the goal with style. We use a set of blocks

in a loop, doing it four times for five
awesome shots side by side. The trick is in

tweaking variables for the robot's angle
and distance each time the blocks are

repeated, so the triballs smoothly enter the
goal without crashing or hanging in the

air.

The robot loaded 5 triballs from the
LoadZone1 and scored them.

Scoring 3 triballs (7th part)

All the hours of programming and work have
brought us to this point, and this is

consequently the culmination of our project.
We are very proud of what we have

achieved as a team and delighted to have
participated in this challenge. Before

officially closing our work, we want to share
the significance and the lessons we have

gained from this experience...

The robot score 2 triballs and push 1
to the red offensive zone, finishing
the program with 1 second left and

87 points.

Our team chose the VEXcode VR online challenge

to enhance our coding and problem-solving skills.

This challenge allows us to delve into the world of

programming and strengthen our competencies in

STEM areas.

From the outset, we were determined to succeed.

Drawing from our previous years' experience,

employing techniques we had used, and with time

and dedication, we managed to delve into,

understand, and apply the knogledge we adquire,

for example: custom blocks, boolean variables,

complex control blocks, etc.

Along the way, we discovered that the use of

sensors can provide greater precision in our codes,

whether intended for a physical or virtual robot.

It's also important to highlight the efficiency of

conditionals and how their proper implementation

is essential for effective code.

The acquired knowledge is of great value in

competitions, offering us insight into the

importance not only of the effectiveness in using

sensors and variables but also the significance of

creativity, perseverance, and problem-solving

ability.

Our solutions can be a great asset to our

community. We aim to introduce othre people to

this robotics program and have them become part

of our community, the VEX community, and share

the same passion for technology as we do.

