
VEXCODE VR SKILLS CODE EXPLANATION - 2496X:

-------------------------------------------------------------------------------------------------

Our code for the VEXcode VR Skills Online Challenge was created with efficiency and

functionality in mind. To satisfy the criteria of being consistent, high-scoring, and

efficient, our code utilizes the PID control loop. This control loop allows the robot to

accelerate when further from the target, and decelerate slowly as the robot

approaches the target. This control loop is defined at the beginning of our program in

the turnPID and drivePID functions.

THE PID FUNCTION:

This is where the drivePID

function is initialized. Inside

of the function, before the

while loop, the necessary

variables are initialized,

including the tuning variables

(kP, kI, and kD). The

drivetrain's rotation sensors

are also reset before the

motion is run.



In the next section of the

PID loop, we write the while

loop that allows the values

of P, I, and D to refresh,

keeping the robot on track to

finish its movement

accurately and quickly.

Inside of the loop, we read

the rotation sensor values of

the drivetrain, and save it in

a variable. This is used to

calculate P, which

contributes acceleration and

deceleration to the

movements of the robot depending on how far the robot is from the target. This is done

by saving the result of the target distance minus the current value in a variable named

error. Moving on to the derivative part of the control loop, this is calculated by

subtracting the error of the previous time the loop was run from the current error. Since

error reduces over time in an ideal situation, this value should be negative. Hence, this

part of the control loop counteracts the proportional, allowing the robot to slow down

as needed when approaching the target. The last part of the control loop is the integral.

This is calculated by adding the sum of the integral values over the entire movement to

the current error. This causes the integral to build up over time, and when it is added to

the speed, it ensures the robot is traveling at the optimal speed, so that the

movements are as quick as possible. We have implemented some safety measures

through the integral threshold and maxI variables. These variables make sure that the



integral only builds up at times when it is needed and ensures that its value isn't so

large that it overshoots

the target. All of these

parts of the control

loop multiplied by their

tuning constants

(which is calculated

manually through trial

and error) added

together results in the

final speed value for

the robot.

At the end of the while

loop, the values are updated for the next loop around. The error, since it has already

been used in calculated speed, is passed to the previous error variable. The count

variable, used for timing out of the control loop once the movement is complete is

updated, and some delay is added at the end of the loop to ensure that the timing of

the control loop continues smoothly and does not ruin the rest of the autonomous

code. Finally, after the robot breaks out of the PID loop, the drivetrain is stopped to

ensure the robot does not move away from the target that we have reached.

This code is mostly duplicated for the turnPID function, with the exception that the

robot is turning, moving both sides of the chassis in opposite directions. The final

speed value and components of the PID loop are calculated in the same ways. The

turnPID function uses the robot's heading to calculate the PID values instead of the

rotation sensors that measure distance traveled.



However, the most essential difference between the turn function and drive functions

is the reading and wrapping of the robot heading value. The unique reading and

processing of the robot's heading value allows the robot to turn to a global heading

value. This means that no matter the current heading of the robot, the robot will always

end up facing the same direction after the movement is completed.

Here are some examples of this in action:



This movement algorithm allows the robot's turns to be ultraprecise, aiding in making

the autonomous program as accurate and consistent as possible. Employing this kind

of code also is a failsafe for our code. In the event that one turn has messed up and the

robot is no longer facing the right direction, the next turn of the program will correct

the robot's heading to where it should be and allows the rest of the program to

continue and does not interfere with the success of other parts of the code.

This functionality of the robot's turn

PID is achieved with the block of

code shown at right. These lines of

code read the robot's heading and

wrap it from -180 to 180 degrees.

The heading of the robot is first

saved inside of a variable called

position. This value is then passed

through a variety of checks in the

form of conditional statements. In

summary, these lines of code

calculate the distance needed to

travel in each direction to reach the target and then tell the robot to choose the most

optimal path possible to ensure the movement is completed quickly and accurately.

This information is saved in variables which are then read at the end of the PID loop to

help calculate the correct speed which needs to be assigned to the drivetrain motors.



THE SKILLS PROGRAM:

Using the PID functions defined at the beginning of the file, we created a

highly-efficient and high-scoring autonomous program. The robot in the virtual

environment follows a well-planned route to score a large amount of points. We

created another function, called whenStarted, which would be called when the

program is started, and sent to the robot to be executed. Inside of the whenStarted

function, we call the PID functions and pass a distance to be driven accurately. Using

these functions for robot movements, the robot executes the pre-planned autonomous

route. One of the most unique components of our autonomous strategy is the half court

shots that can be seen

in our program. By

outtaking the triball as

the front of the chassis

bumps up onto the

barrier, we can allow the

triball to gain enough

speed and height to shoot across the field and go into the goal. This strategy saves us a

lot of time in the program and allows us to score a large number of points.

Another creative part of our code is our use of variables, loops, and conditional

statements to simplify the code and make its function more efficient and consistent.

This is seen in the part of the autonomous program in which the robot takes triballs

from the match loading zone and shoots them across the field into the goal for extra

points.



As seen in line 279 and 280, some

variables are initialized before the

loop is started. These are the loop

counter and turn distance variables.

The loop counter variable is

sequenced every time the loop runs

once. This allows us to know how

many times the loop has run, and

break out of the loop according to this

value. The other value is the turn

distance. This is what is passed to the

turnPID function, telling it how much it needs to turn before shooting the triball. Next,

we have the loop itself, which will keep on running until the loop counter variable

reaches 4. Inside of the loop itself, the PID functions are called to tell the robot to

repeat functions. The loop counter variable is sequenced and the turn distance variable

is changed every loop around. The turn distance is increased every loop so that the

robot is always facing an open spot in the goal before shooting the triball there. This

avoids clumps of triballs and increases the chances the triball lands inside of the goal.

We have also added an if statement inside of the loop, which checks if the loop has run

more than 3 times, and breaks out of the loop before the robot returns to the match

loading bar, saving us some time in the program.



WHAT MAKES OUR CODE SPECIAL:

There are many parts of our autonomous program that make it unique from the code of

other teams partaking in this challenge. These special parts of our code allow it to

function faster and better, giving our

team's submission the competitive

advantage over other teams.

One of these features are the variables.

Variables are storage for information in a

computer program. By saving some

information under a name, we can

retrieve this information later in our code

and use it for a variety of things.

Variables can be modified at any time. This simplifies the coding process greatly and

allows for some extra function in the code. Our code utilizes many boolean and integer

variables. We use boolean variables in our code to tell the multiple parts of the PID

control loop and robot's subsystems to be on or off. With this, we can properly manage

the functions of the autonomous program and ensure that it does not break due to the

incoordination of elements. Integer variables are utilized in many parts of the code,

such as in saving distance driven, calculating the different parts of the PID, and

sequencing variables.

Our code also uses loops. These are

built in functions of python that allow

for a few lines of code to be repeated.

Using this functionality, we can

simplify our code and by introducing

other features, such as variables and

conditional statements, we can make



the code function better as a whole. We also use conditional statements, which are

lines of code that only allow a specific block of code to run if the current program

meets certain requirements. Our program is centered around these statements, from

reading variables, to initiating loops, and other elements of our code. Finally, our code

uses functions, which are multiple lines of code that store lines of code to be called

whenever necessary. When paired with parameters (which function as guidelines for

the function to run), these functions greatly improve the function and readability of the

code.

In conclusion, our autonomous program makes use of the industry-level PID control

loop and innovative coding solutions to allow our team's VEXcode VR Skills runs to be

high-scoring, efficient and accurate. By implementing unique strategies and

programming to allow our code to gain a competitive edge over other teams, our team

was able to create an autonomous program that places us amongst the top 20 teams in

the Global Virtual Skills Standings.


