
2024 VEXcode VR Skills Challenge - Elementary School by Team

97793A

Team Number: 97793A

Team Name: Hicks Team A - Guardians of the Bot

Team Members: Carter, Colin, Markus, Rohanna, Yura

Programmers: Colin, Markus

School: Hicks Canyon Elementary

Location: Irvine, California



Our Process:

We followed ALL the steps #1 to 9 of the Engineering Design Process to do this

online challenge:



Our Strategy:

Criteria Points

Score 6 blocks or more 6 or more

Move 3 red blocks 15

3 Uniform Bonus 30

Fill Level 2 20

Full Parking 10

TOTAL 81 or more



Our Sensors Use:

1. Distance sensor:

- To tell us how far the object in front of the distance sensor is, to help us

calculate how far to drive to reach our destination accurately instead of

hardcoding the exact distance to drive

- To put the bot in the correct position from the goal to score consistently

2. Bumper switch:

- to see whether a block has been picked up successfully

3. Optical sensor:

- to see what color the block in the intake is

- To see whether the block that’s picked up is the right color

4. Inertial sensor:

- to make accurate and precise turns using the drivetrain heading

5. Timer on brain:

- to see how much match time we have used up, to see how much time we have

left to do things



Our Functions Use:

- We used functions for common operations that are used more than once in the

program, for example picking up a block, instead of making copies of the same

code many times all over the program

- This way, we will not need to change many copies of the code every time we need

to make a change. Doing that takes time and is easy to make mistakes

- Even if an operation is not needed more than once, functions also helped us organize

our code into groups, for example parking.

- The makes our code more organized and easier to read than hundreds of lines of

code altogether in one place

Our functions:

1. DriveForDistanceMmToHeading - Turn and drive forward for the input

distance

2. DriveTillDistanceMmtoHeading - Turn and drive until the robot reaches the

input distance from the object in front



3. CollectBlockOfColorHueAtHeading - Collect a block

4. ScoreBlockToHeading - Turn and drive to the goal and score a block into

the goal

5. Park - Fully park the bot.

- Functions 1-4 were used many times in the code

- We used inputs to input different information for the functions to use from

different places in the code, for example whether to collect a purple or red block

- Function 5 was only used once, but it has almost 20 lines of code with conditional

logic, so it was good to organize it into its own function that is easier to read.



Our Variables Use:

- We used variables instead of coding hard numbers

- We put all variables together at the top of the program instead of scattered

everywhere in the code. It is very easy and convenient to see and adjust all

their values from the top of the program.





Our Advanced Programming Structures Use:

Advanced programming structures and conditional logic we used:

1. If blocks

Example:

The arm position for using the distance sensor is set in the distanceSensorArmPos

variable. The arm will not be blocking the distance sensor from there.

When trying to use the distance sensor:

If arm is currently lower than the distanceSensorArmPos variable setting

then

Raise arm to the distanceSensorArmPos variable position

That means:

If arm is too low and is blocking the distance sensor then

Raise arm to non blocking position for the distance sensor



2. If Else blocks

Example - If Else block inside If block:



When trying to drive the robot to the input distance from the object in

front:

If the distance sensor is not at the input distance from the object in

front then

If the distance sensor is too far from the object then

Drive forward for how much it is too far by

Else

Otherwise, drive backward for how far it is too close by



3. Wait Until blocks

Example:

When trying to pick up a block:

Start spinning the intake and driving forward

Wait until the bumper switch sensor is pressed, which tells us the

sensor detects a block in the intake

Then stop driving forward and spinning the intake



4. While blocks

Example - While block with If blocks and Wait Until blocks inside it:



When trying to pick up a block, which has to be the right color:

While the intake is empty, or the block in the intake is not of the

right color

If there is a block in the intake, but it is not of the right color

then

Dump the wrong colored block and turn back to the block

pick up direction

If we have reached, or exceeded the maximum number of tries

to pick up the right colored block then

quit

Move the arm to the block pickup position, and start spinning the
intake and driving forward to pick up a block

Wait until the bumper switch sensor is pressed, which tells us

the sensor detects a block in the intake

Then stop driving forward and spinning the intake

Increase the number of tries counter



Lessons Learned:

How has VR Skills improved our coding skills and helped us with our

competition?

1. We have gotten a lot more familiar with coding a robot using Vexcode Blocks

2. We have learned a lot about sensors, functions, and variables.

3. We have changed our competition autonomous code to use a lot more

variables instead of coding hard numbers. This made changing the code and

testing a lot easier.

4. We have changed our competition autonomous code to use functions for

common operations instead of repeating the same code many times in our

program, for example to score blocks into a goal. This has made changing

our code a lot easier and quicker.

We have also changed our competition autonomous code by organizing

different sections of our code into functions. This has made our code more

organized and easier to understand.

5. We have changed our competition autonomous code to use the Inertial

Sensor and drivetrain heading to make accurate and precise turns instead

of hardcoding the exact angles to turn, for example:

From:

Turn right for 65 degrees

To:

Turn to heading 165 degrees



This has helped us face our robot in the right direction no matter whether

the robot was facing the right direction before. This has helped our robot

run a lot more smoothly and accurately in our competition autonomous

skill runs.

6. We are going to modify our competition robot to add a distance sensor to

the front of our chassis:

- To help us calculate and make accurate drives to reach our destination

instead of hardcoding the exact distances to drive which does not always

work, for example when the robot has drifted which changes the next

driving start position

- To help us always drive the robot to the correct distance from the goal to

score consistently instead of hardcoding the exact distance to travel which

does not always work



Our Code:


















