2024 VEXcode VR Skills Challenge - Elementary School by Team
97793A

Team Number: 97793A

Team Name: Hicks Team A - Guardians of the Bot

Team Members: Carter, Colin, Markus, Rohanna, Yura

Programmers: Colin, Markus

School: Hicks Canyon Elementary

Location: Irvine, California

Our Process:

We followed ALL the steps #1 to 9 of the Engineering Design Process to do this
online challenge:

=0

gngmeermg

Design

Process
. inNine Steps

Our Strategy:

1 "\

R o

If there

Criteria Points
Score 6 blocks or more 6 or more
Move 3 red blocks 15

3 Uniform Bonus 30

Fill Level 2 20

Full Parking 10

TOTAL 81 or more

Our Sensors Use:

Inertial Sensor

VR ik

= Code W)

Sensing

Drivetrain ~ Brain Sensing
I

reset timer

Motion
Optical .
Distance == ¢ . -

1. Distance sensor:

- To tell us how far the object in front of the distance sensor is, to help us
calculate how far to drive fo reach our destination accurately instead of
hardcoding the exact distance to drive

- To put the bot in the correct position from the goal to score consistently

2. Bumper switch:
- to see whether a block has been picked up successfully

3. Optical sensor:
- to see what color the block in the intake is
- To see whether the block that's picked up is the right color

4. Inertial sensor:
- to make accurate and precise turns using the drivetrain heading

5. Timer on brain:
- to see how much match fime we have used up, to see how much time we have
left to do things

Our Functions Use:

defi
SHEE DriveForDistanceMmToHeading distanceMm heading

define
DriveTillDistanceMmToHeading distanceMm heading

defi
SHES CollectBlockOfColorHueAtHeading colorHue heading wrongColorDumpHeading maximumTries

defi define
SIS ScoreBlockToHeading heading Park

- We used functions for common operations that are used more than once in the
program, for example picking up a block, instead of making copies of the same
code many times all over the program

- This way, we will not need to change many copies of the code every fime we need
to make a change. Doing that takes time and is easy to make mistakes

- Even if an operation is not needed more than once, functions also helped us organize
our code into groups, for example parking.

- The makes our code more organized and easier to read than hundreds of lines of
code altogether in one place

Our functions:

1. DriveForDistanceMmToHeading - Turn and drive forward for the input
distance

2. DriveTillDistanceMmtoHeading - Turn and drive until the robot reaches the
input distance from the object in front

3. CollectBlockOfColorHueAtHeading - Collect a block

4. ScoreBlockToHeading - Turn and drive to the goal and score a block into
the goal

5. Park - Fully park the bot.

Functions 1-4 were used many times in the code

We used inputs to input different information for the functions to use from
different places in the code, for example whether to collect a purple or red block

Function 5 was only used once, but it has almost 20 lines of code with conditional
logic, so it was good to organize it into its own function that is easier to read.

Our Variables Use:
- We used variables instead of coding hard numbers

- We put all variables together at the top of the program instead of scattered
everywhere in the code. It is very easy and convenient to see and adjust all
their values from the top of the program.

when started

ADJUST ALL THE SETTINGS FOR THE PROGRAM HERE|
Settings for picking blocks up:
Arm position for picking blocks up (degrees|

set collectingArmPositio * to @

The 3 block colors, for specifying what color block to pick up, and checking the correct color is picked u

set redHue * to o
set greenHue * to @
set purpleHue * to

Time (seconds) needed to dump a wrong block, for when a wrong colored block is picked u|

set dumpWrongColorTimeSe * to @

Settings for using the distance sensor:

Arm position when using the distance sensor (degrees) - arm should be raised enough to not block sensc

set distanceSensorArmPos ¥ to m

Settings for scoring blocks into goal:

set scoringArmPosition * to @

How far from goal robot should be when scoring (mm)

set scoringDistanceMm * to m

How long to spin outtake to drop block into goal (seconds]

set scoringTimeSeconds ¥ to @

Maximum time we have in match (60 seconds]

set maximumMatchTimeSeco ¥ to @
How much time (seconds) is needed to grab and score another block before parking, to decide whether we should go for another |

set timeNeededForOneMore ¥ to @

Settings for full parking:
set parkingHeading * to o

How long (seconds) to speed towards the supply zone at the beginning of full parking

set initialFullParkTimes v to ()

How much to jiggle the robot left and right to push it into the supply zone (degrees

set fullParkJiggleAngle * to @

How much time (seconds) to pause after jiggling the robo
set fullParkJiggleTimeSe * to

How long (seconds) to drive to climb into the supply zone after jiggling the robo

set continueFullParkTime ¥ to @

Arm position after full parking (degrees) - point up to not stick ou

set fullParkingArmPositi * to @

Minimum drivetrain heading (0 degrees)

set minimumHeading * to o

Drivetrain heading limit (360 degrees)

set headingLimit ¥ to

Set all velocities to the fastest possible:

set drive velocity to @ %

Our Advanced Programming Structures Use:
Advanced programming structures and conditional logic we used:
1. If blocks

Example:

#2 Raising Arm to certain degrees so not blocking distance sensor:

ArmMotorGroup ¥ positionin degrees ¥ < distanceSensorArmPos then

spin ArmMotorGroup ¥ to position = distanceSensorArmPos degrees ¥ .

The arm position for using the distance sensor is set in the distanceSensorArmPos
variable. The arm will not be blocking the distance sensor from there.

When trying to use the distance sensor:

If arm is currently lower than the distanceSensorArmPos variable setting
then

Raise arm to the distanceSensorArmPos variable position

That means:

If arm is too low and is blocking the distance sensor then

Raise arm to non blocking position for the distance sensor

2. If Else blocks

Example - If Else block inside If block:

#3 Check how far the distance sensor is from the object in front

set currentDistanceMm ¥ to FrontDistance ¥ objectdistancein mm ¥

#4 Calculate how far to drive:

currentDistanceMm = distanceMm

currentDistanceMm > distanceMm

If too far from object, drive forward

drive forward ¥ for | currentDistanceMm - distanceMm

else

If too close to object, drive backward

drive reverse ¥ for | distanceMm |- currentDistanceMm

When trying to drive the robot to the input distance from the object in
front:

If the distance sensor is not at the input distance from the object in
front then
If the distance sensor is too far from the object then
Drive forward for how much it is too far by
Else

Otherwise, drive backward for how far it is too close by

3. Wait Until blocks

Example:

spin IntakeMotorGroup ¥ intake ¥

drive forward ¥

wait until IntakeBumper ¥ pressed?

stop driving

stop IntakeMotorGroup *

When trying to pick up a block:

Start spinning the intake and driving forward

Wait until the bumper switch sensor is pressed, which tfells us the
sensor detects a block in the intake

Then stop driving forward and spinning the intake

4. While blocks

Example - While block with If blocks and Wait Unftil blocks inside it:

#3 While we do not have the right colored block, keep trying:

Use the bumper switch sensor to see whether there is a block in the intake, and use the optical sensor to see whether the block color is carrect

while not IntakeBumper * pressed? FrontOptical * hue in degrees = colorHue

#4 If there is a wrong colored block in the intake, dump

IntakeBumper * pressed? and not FrontOptical * hue in degrees = colorHue

Turn to where to dump the wrong block colored using the inertial sensor and drivetrain heading

turn to heading = wrongColorDumpHeading degrees '

Spin outtake to drop block:

spin IntakeMotorGroup * outtake *
wait dumpWrongColorTimeSe seconds

stop IntakeMotorGroup *

Turn back towards the block pickup direction using the inertial sensor and drivetrain heading

turn to heading ' heading degrees ’

#5 If tried many times but

failing, lly stop trying and move on

numberOfTimesTried = maximumTries or numberOfTimesTried > maximumTries then

#6 Otherwise, pick up another block:
Move the arm to the block pickup positio

spin ArmMotorGroup * to position = collectingArmPositioc degrees ~ ’

ke and start driving forward until the bumper switch sensor is pressed, which tells us that a block has been picked up

spin IntakeMotorGroup ¥ intake *
drive forward +

wait until IntakeBumper ¥ pressed?
stop driving

stop IntakeMotorGroup *

#7 After done picking up a block, add 1 to number of trie

change numberOfTimesTried~> by o

When trying to pick up a block, which has to be the right color:

While the intake is empty, or the block in the intake is not of the
right color

If there is a block in the intake, but it is not of the right color
then

Dump the wrong colored block and turn back to the block
pick up direction

If we have reached, or exceeded the maximum number of tries
to pick up the right colored block then

quit

Move the arm to the block pickup position, and start spinning the
intake and driving forward to pick up a block

Wait until the bumper switch sensor is pressed, which tells us
the sensor detects a block in the intake

Then stop driving forward and spinning the intake

Increase the number of tries counter

Lessons Learned:

How has VR Skills improved our coding skills and helped us with our
competition?

1. We have gotten a lot more familiar with coding a robot using Vexcode Blocks

2. We have learned a lot about sensors, functions, and variables.

3. We have changed our competition autonomous code to use a lot more
variables instead of coding hard numbers. This made changing the code and
testing a lot easier.

4. We have changed our competition autonomous code to use functions for
common operations instead of repeating the same code many times in our
program, for example to score blocks into a goal. This has made changing
our code a lot easier and quicker.

We have also changed our competition autonomous code by organizing
different sections of our code into functions. This has made our code more
organized and easier to understand.

5. We have changed our competition autonomous code to use the Inertial
Sensor and drivetrain heading fo make accurate and precise turns instead
of hardcoding the exact angles to turn, for example:

From:
Turn right for 65 degrees

To:

Turn to heading 165 degrees

This has helped us face our robot in the right direction no matter whether
the robot was facing the right direction before. This has helped our robot
run a lot more smoothly and accurately in our competition autonomous
skill runs.

6. We are going to modify our competition robot to add a distance sensor to
the front of our chassis:

- To help us calculate and make accurate drives to reach our destination
instead of hardcoding the exact distances to drive which does not always
work, for example when the robot has drifted which changes the next
driving start position

- To help us always drive the robot o the correct distance from the goal to
score consistently instead of hardcoding the exact distance to travel which
does not always work

Our Code:

This simple function turns the robot to the input heading and drives
forward for the input distance

define

DriveForDistanceMmToHeading distanceMm heading using Functions

This simple function turns the robot to the input heading and drives forward for the input distance:

Input 1: distanceMM - distance to drive forward (mm)
Input 2: heading - heading to turn robot (degrees)

TN

{ #1 Turn using the inertial sensor and drivetrain heading

using Comments

turn to heading | heading = degrees P USil"Ig Intertial Sensor

{ #2 Drive forward for the input distance]

drive forward ¥ for | distanceMm

define

DriveTillDistanceMmToHeading distanceMm heading

This function turns the robot to the input heading, and drives until the distance sensor in front of the robot reaches the input distance from the object in front:

Input 1: distanceMM - di
Input 2: heading - heading to turn robot (degrees)

#1 Turn using the inertial sensor and drivetrain heading

turn to heading | heading ' degrees ’

toreach b the di

sensor and the object in front of it (mm)

#2 Raising Arm to certain degrees so not blocking distance sensor:

ArmMotorGroup ¥ positionin degrees ¥ < distanceSensorArmPos then

spin ArmMotorGroup ¥ to position = distanceSensorArmPos degrees ¥ '

#3 Check how far the distance sensor is from the object in front

set currentDistanceMm * to FrontDistance ¥ object distancein mm ¥

#4 Calculate how far to drive:
currentDistanceMm = distanceMm

currentDistanceMm > distanceMm then

If too far from object, drive forward

drive forward * for || currentDistanceMm - distanceMm

If too close to object, drive backward

drive reverse ¥ for | distanceMm - currentDistanceMm

O)®

define

CollectBlockOfColorHueAtHeading colorHue heading wrongColorDumpHeading maximumTries

This function picks up a block in the input color. It uses the bumper switch sensor to see whether a block has been picked up, and uses the
optical sensor to see what color the block is. If a wrong color is picked, it will dump the wrong block and try again, until it reaches the input
maximum number of tries.

Input 1: colorHue - color of the block to pick up (hue)

Input 2: heading - heading to pick up from (degrees)

Input 3: wrongColorDumpHeading - heading to dump wrong colored blocks (degrees). This should be out of the way of the robot
Input 4: maximumTries - the number of times to try picking up the correct color before giving up

#1 Reset the number of times tried counter

set numberOfTimesTried ¥ to o

#2 Turn towards the block pickup direction using the inertial sensor and drivetrain heading

turn to heading ' heading degrees ’

#3 While we do not have the right colored block, keep trying:

Use the bumper switch sensor to see whether there is a block in the intake, and use the optical sensor to see whether the block color is correct

while not IntakeBumper * pressed? or not FrontOptical * hueindegrees = coloerHue

#4 If there is a wrong colored block in the intake, dump it:

IntakeBumper * pressed? and not FrontOptical * hue indegrees = colorHue

Turn to where to dump the wrong block colored using the inertial sensor and drivetrain heading

turn to heading | wrongColorDumpHeading degrees .

Spin outtake to drop block:

spin IntakeMotorGroup * outtake *
+
wait dumpWrongColorTimeSe seconds &

stop IntakeMotorGroup ¥

Turn back towards the block pickup direction using the inertial sensor and drivetrain heading

eading heading degrees ’

#5 If tried many times but

failing, lly stop trying and move on

numberOfTimesTried = maximumTries numberOfTimesTried > maximumTries then

#6 Otherwise, pick up another block:

Move the arm to the block pickup position

spin ArmMotorGroup ¥ to position collectingArmPositio degrees * '

Spin the intake and start driving forward until the bumper switch sensor is pressed, which tells us that a block has been picked up

spin IntakeMotorGroup * intake *
drive forward *

‘wait until IntakeBumper ¥ pressed?
stop driving

stop IntakeMotorGroup +*

#7 After done picking up a block, add 1 to number of tries

change numberOfTimesTried * by o

IOBRNO;

define

ScoreBlockToHeading heading

This function drives to the goal in the direction of the input heading and drops a block into it

Input 1: heading - heading of the goal (degrees)

#1 Raise the arm to the scoring position

spin ArmMotorGroup ¥ to position | scoringArmPosition degrees ¥ '

#2 Drive towards the goal till we are at the correct distance from the goal to score

DriveTillDistanceMmToHeading = scoringDistanceMm heading

#3 Spin outtake to drop block:

spin IntakeMotorGroup * outtake *

wait scoringTimeSeconds | seconds

stop IntakeMotorGroup ~

This function fully parks the robot over the low supply zone bar

define using Functions

This function fully parks the robot over the low supply zone bar:
#1 Turn towards the low supply zone bar using the inertial sensor and drivetrain heading

turn to heading | parkingHeading = degrees ’ l.lSing Inertial Sensor

using Comments

#2 Start speeding towards the low supply zone bar:

drive forward ¥ using Variables

wait initialFullParkTimeS | seconds

#3 Jiggle the robot to the left to hit the supply zone bar at an angle:

Calculate the jiggle heading. Convert any negative headings by adding 360 degrees

using Advanced
parkingHeading - fullParkJiggleAngle < minimumHeading Programming Structures

turn to heading headingLimit + parkingHeading - fullParkJiggleAngle degreé

else

turn to heading = parkingHeading - fullParkJiggleAngle degrees ’

wait fullParkJiggleTimeSe | seconds
#6 Turn back and finish climbing into the supply zone after another pause:

turn to heading | parkingHeading @ degrees .
drive forward ¥
wait continueFullParkTime | seconds

stop driving

#7 Point the arm up to make sure it doesn’t stick out of the supply zone

spin ArmMotorGroup ¥ to position fullParkingArmPositi degrees ¥ .

when started

ADJUST ALL THE SETTINGS FOR THE PROGRAM HERE
Settings for picking blocks up:
Arm position for picking blocks up (degrees

set collectingArmPositio ¥ to @

The 3 block colors, for specifying what color block to pick up, and checking the correct color is picked u

set redHue *+ to o
set greenHue ¥ to @
set purpleHue * to

Time (seconds) needed to dump a wrong block, for when a wrong colored block is picked u

set dumpWrongColorTimeSe * to @

Settings for using the distance sensor
Arm position when using the distance sensor (degrees) - arm should be raised enough to not block sensc

set distanceSensorArmPos ¥ to @

Settings for scoring blocks into goal:

set scoringArmPosition * to @

How far from goal robot should be when scoring (mm)

set scoringDistanceMm * to m

How long to spin outtake to drop block into goal (seconds

set scoringTimeSeconds * to @

Maximum time we have in match (60 seconds]

set maximumMatchTimeSeco ¥ to @
How much time (seconds) is needed to grab and score another block before parking, to decide whether we should go for another |

set timeNeededForOneMore ¥ to @

Settings for full parking:
set parkingHeading * to o

How long (seconds) to speed towards the supply zone at the beginning of full parking

set initialFullParkTimeS * to @

How much to jiggle the robot left and right to push it into the supply zone (degrees]

set fullParkJiggleAngle *+ to @

How much time (seconds) to pause after jiggling the robo
set fullParkJiggleTimeSe ¥ to

How long (seconds) to drive to climb into the supply zone after jiggling the robo

set continueFullParkTime ¥ to @

Arm position after full parking (degrees) - point up to not stick ou

set fullParkingArmPositi * to @

Minimum drivetrain heading (0 degrees)
set minimumHeading ¥ to o

Drivetrain heading limit (360 degrees)

set headingLimit * to gLiK

Rat all ualaritiae tn tha factaet nnecihlas

Set all velocities to the fastest possible:

set drive velocity to m %
set turn velocity to @ %%

set ArmMotorGroup ¥ velocity to m % *

set IntakeMotorGroup * velocity to @ % -

#1 Collect and score purple block into the top left goal:

CollectBlockOfColorHueAtHeading purpleHue o o
ScoreBlockToHeading gk

#2 Collect and score another purple block into the top left goal to achieve uniform bonus and fill level 2:

CollectBlockOfColorHueAtHeading purpleHue @ @ °
ScoreBlockToHeading

#3 Collect and score red block into the bottom left goal:

CollectBlockOfColorHueAtHeading redHue @ @ o

It is easier to drop the red block completely into the goal at a 90 degree angle

ScoreBlockToHeading @

#4 Collect and score another red block into the bottom left goal to achieve uniform bonus and fill level 3 for this goal:

CollectBlockOfColorHueAtHeading redHue o o

It is easier to drop the red block completely into the goal at a 90 degree angle

ScoreBlockToHeading @

#5 Collect and score purple into the bottom right goal:

CollectBlockOfColorHueAtHeading purpleHue 47.75 @ o

Drive part way towards the goal without using the distance sensor first to bypass the blocks ahead before using the distance sensor to score more precisely

DriveForDistanceMmToHeading @
ScoreBlockToHeading m

#6 Pick up another purple block

CollectBlockOfColorHueAtHeading purpleHue @ @ o

#7 Knock off red nearby

DriveForDistanceMmToHeading @ @

#8 Score purple block

into the bottom right goal to achieve uniform bonus and fill level 2:

Drive part way towards the goal without using the distance sensor first to bypass the blocks ahead before using the distance sensor to score more precisely

DriveForDistanceMmToHeading @ m
ScoreBlockToHeading m

Drive to a good starting position for parking or picking up from the supply zone

DriveTillDistanceMmToHeading @ 9

#9 while there is enough time left before full parking, keep grabbing more purple blocks from the supply zone and scoring into the bottom right goal:

Use the timer from the brain sensing to see how match time we have used

maximumMatchTimeSeco - timerin seconds > timeNeededForOneMore

CollectBlockOfColorHueAtHeading purpleHue o @ o

ScoreBlockToHeading

O ®

#10 fully park

